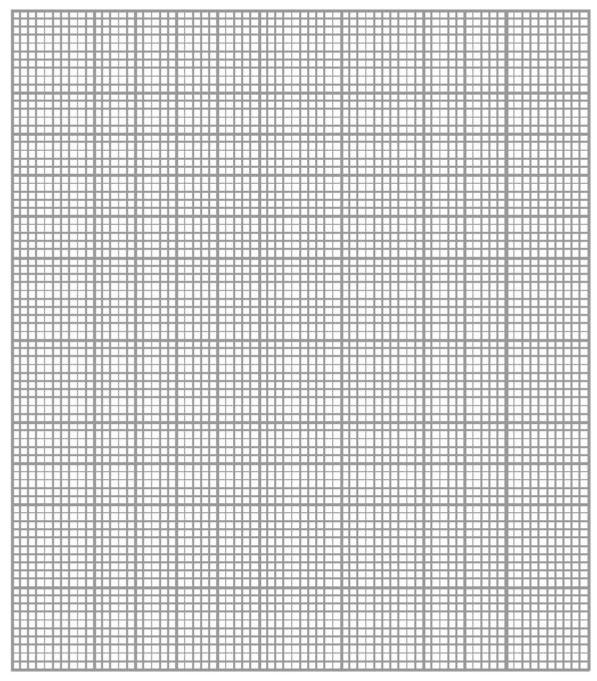
Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic : 4_Materials

Name of the Student:	·
Max. Marks : 19 Marks	Time : 19 Minutes
Q1.	
The diagram shows a rock climber of mass 55 kg. She is hanging on a rope with one for face. She uses this foot to push herself horizontally away from the rock face. The rope is vertical.	ot in contact with a rock s inclined at 20° to the
(a) Complete the free-body force diagram below to represent the forces acting on the	
•	(3)
(b) (i) Show that the tension in the rope is about 600 N.	(3)


(ii) The rope extends by 2.5 cm when used as shown. Calculate the energy stored within the rope.	(2)
Energy stored =	
(iii) State one assumption made in this calculation.	
	(1)
(Total fo	r question = 9 marks)
Q2.	
A student carried out an experiment to identify a fluid from its viscosity at room temperate	ure.
A ball bearing of diameter d was released at the top of a container containing the fluid. To bearing was recorded using a video camera and hence the terminal velocity ν of the ball determined.	
This was repeated for ball bearings of increasing diameter with the fluid at a constant ter	nperature.
hall bearing	
ball bearing	
$v = \frac{d^2g(\rho_{\rm b} - \rho_{\rm f})}{18n}$	
(a) To determine the viscosity η , the student used the equation 18η	
where ρ_b = density of the material of the ball bearing ρ_f = density of the fluid.	
Explain why a graph of v on the y -axis and d^2 on the x -axis should be a straight line the	hrough the origin. (3)

(b) The student obtained the following data.

$d / 10^{-3} \text{ m}$	$d^2 / 10^{-6} \text{ m}^2$	$v / 10^{-3} \mathrm{m \ s^{-1}}$
1.0	1.0	2.3
2.0	4.0	11
3.0	9.0	23
4.0	16.0	39
5.0	25.0	64

Plot the graph of v against d^2 .

(4)

(c) The table shows the viscosity of some different fluids.

Fluid	Viscosity at room temperature / Pas
castor oil	1.0
glycerol	1.2
corn syrup	1.4
honey	1.9

Use the graph to deduce which fluid the student used.
density of ball bearing = 8000 kg m⁻³
density of fluid = 1260 kg m⁻³

(4)

(Total for question = 11 marks)