Practice Question Set For A-Level

**Subject: Physics** 

Paper-2 Topic : 4\_Materials



Name of the Student:

Max. Marks: 18 Marks

Time: 18 Minutes

Mark Schemes

## Q1.

| Question<br>Number | Acceptable answers                                                                                                                              | Additional guidance                                                                                                                                                                                                                                                                                | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (i)                | • Use of $\rho = \frac{m}{v}$ (1)<br>with $V = \pi r^2 L$<br>• $\mu = 1.09 \times 10^{-3} \text{ (kg m}^{-1}\text{)}$<br>(to at least 3 sf) (1) | For MP1, accept use of $\rho$ A  Example of calculation: $\mu = \frac{m}{L} = \frac{V\rho}{L} = \frac{\pi r^2 L \rho}{L} = \pi r^2 \rho$ $\therefore \mu = \pi \left(\frac{1.14 \times 10^{-3} \text{ m}}{2}\right)^2 \times 1070 \text{ kg m}^{-3}$ $\mu = 1.09 \times 10^{-3} \text{ kg m}^{-1}$ | 2    |

| Question<br>Number | Acceptable answers                                                                                                                                       | Additional guidance                                                                                                                                                                                                                                                                                                                          |   |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (ii)               | • Use of $L = \frac{\lambda}{2}$ (1)<br>• Use of $v = f\lambda$ (1)<br>• Use of $v = \sqrt{\frac{T}{\mu}}$ (1)<br>• $T = 140$ N (ecf from (a)(i))<br>(1) | Example of calculation:<br>$\lambda = 2 \times 0.41 \text{ m} = 0.82 \text{ m}$ $v = 440 \text{ Hz} \times 0.82 \text{ m} = 361 \text{ m s}^{-1}$ $361 \text{ m s}^{-1} = \sqrt{\frac{T}{1.09 \times 10^{-3} \text{ kg m}^{-1}}}$ $\therefore T = (361 \text{ m s}^{-1})^2 \times 1.09 \times 10^{-3} \text{ kg m}^{-3}$ $T = 142 \text{ N}$ | 4 |

| Question<br>Number | Acceptable Answer                                                                                                                                                                                                                                                                                                                                                                        |                   | Additional Guidance Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rk |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (i)                | Bottom plate marked positive  Or bottom terminal of positive supply marked positive                                                                                                                                                                                                                                                                                                      |                   | Accept top plate marked negative or top terminal of power supply marked negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1  |
| (ii)               | <ul> <li>Calculates volume of oil drop</li> <li>Use of ρ = m/v</li> <li>Use of E = v/d</li> <li>Use of F = mg and F = Eq</li> <li>Use of N = q/e</li> <li>W = 4.2 so student's expectation not supported by data</li> <li>Or N = 4.2 which is not a whole number</li> <li>Or N = 4.2 so taking experimental error into account student's expectation may be supported by data</li> </ul> | (1)<br>(1)<br>(1) | Example of calculation $V = \frac{4}{3} \pi \times (1.78 \times 10^{-6} \text{ m})^3 = 2.36 \times 10^{-17} \text{ m}^3$ $m = 2.36 \times 10^{-17} \text{m}^3 \times 920 \text{ kg m}^{-3} = 2.17 \times 10^{-14} \text{ kg}$ $E = \frac{4870 \text{ V}}{1.55 \times 10^{-2} \text{ m}} = 3.14 \times 10^5 \text{ V m}^{-1}$ $q = \frac{2.17 \times 10^{-14} \text{ kg} \times 9.81 \text{ N kg}^{-1}}{3.14 \times 10^5 \text{ N C}^{-1}} = 6.78 \times 10^{-19} \text{ C}$ $N = \frac{6.78 \times 10^{-19} \text{ C}}{1.60 \times 10^{-19} \text{ C}} = 4.23$ | 6  |

## Q3.

| Question<br>Number | Acceptable Answer                                                                                                                                                                                                                                                                                                                                                                                                                  | Acceptable Answer |                                | Mark |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|------|
| (i)                | An explanation that makes reference to max two of the followin points:  The oil drop initially accelerates Or it takes time for the oil drop to reach terminal velocity  (Initially) weight of oil drop not balanced by the drag force (+ upthrust) Or Weight of oil drop must be balanced by the drag force (+ upthrust)  (If measurements are taken immediately) the calculated velocity will be less than the terminal velocity | (1)<br>(1)<br>(1) | Accept use of standard symbols | 2    |

| Question<br>Number | Acceptable Answer                                                                                                                                                                            |                                               | Additional Guidance                                                                                                                                              | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (ii)               | <ul> <li>Positions from scale used to determine displacement</li> <li>Use of v = s/t</li> <li>v = 3.4 × 10<sup>-5</sup> m s<sup>-1</sup> → 3.5 × 10<sup>-5</sup> m s<sup>-1</sup></li> </ul> | <ul><li>(1)</li><li>(1)</li><li>(1)</li></ul> | Example of calculation Displacement = 6.65 mm - 2.50 mm = 4.15 mm $v = \frac{4.15 \times 10^{-3}}{2 \times 60 \text{ s}} = 3.46 \times 10^{-5} \text{ m s}^{-1}$ | 3    |