Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic : 4_Materials

Name of the Student:_____

Max. Marks : 20 Marks Time : 20 Minutes

Mark Schemes

Q1.

Question Number	Acceptable Answer	Additional Guidance	Mark
	Upthrust on canister equals weight of air/fluid displaced. (I) Volume of canister stays constant, so upthrust on canister remains constant (and student X is incorrect) (I) Mass of helium gas (in canister) decreases (I) Hence the weight will decrease (as helium is released) and student Y is correct		4

Q2.

Question Number	Acceptable answers			Additional guidance	
(i)	•	Use of $W = mg$	(1)	Example of calculation:	
	•	Use of $F = kx$	(1)	$275 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 2700 \text{ N}$ $2700 \text{ N} = k \times 0.152 \text{ m}$	100
	•	$k = 17700 (\text{N m}^{-1})$	(1)	$k = 17748 \text{ N m}^{-1}$	3

(ii)	(1) Example of calculation:	
• Use of $T = 21$	$T \sqrt{\frac{m}{k}}$ (1) $T = 2\pi \sqrt{\frac{1100 \text{ kg}}{4 \times 17700 \text{ N m}^{-1}}}$	
• Use of $f = 1$ /	(-)	3
• f=1.3 Hz (ecf from (b)(B MONTH PT MARKET SECTION	115

Q3.

Question Number	Acceptable answers	Additional guidance	Mark	
(i)	• Substitutes stress = $\frac{F}{A}$ and strain = $\frac{\Delta x}{x}$ into $E = \frac{stress}{strain}$	(1) (1)		2
	• Identifies gradient as $\frac{F}{\Delta x}$	(1)		80
(ii)	 Calculates gradient of straight section Use of E = gradient × ^x_ 	(1)		4
	A	(1)		
	• $E = 1.2 \text{ to } 1.3 \times 10^{11} \text{ N m}^{-2}$		4001 W 10 10 10 10 10 10 10 10 10 10 10 10 10	
	Wire is made from copper because 117 GPa is closest to the calculated value Or Correct conclusion of the metal consistent with candidate's calculated value	(1) (1)	Example of calculation Gradient = $\frac{33}{7 \times 10^{-3}}$ = 4600 - 4900 E = 1.24 × 10 ¹¹ N m ⁻¹ = 124 GPa copper	
(iii)	Use a smaller (maximum) force/load	(1)		4
	To avoid exceeding the limit of proportionality Or As the breaking force of a thinner wire is smaller	(1)		
	Use small(er) increments in the force/load	(1)		
	To obtain more readings (before the elastic limit is reached) Or			
	to obtain enough readings (in the linear part of the graph)	(1)		