Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic : 4_Materials

Name of the Student:

Max. Marks : 27 Marks

Time : 27 Minutes

Mark Schemes

Q1.

Question Number	Acceptable Answers	Additional guidance	Mark
(i)	• Use of $v = \frac{s}{t}$	(1) Example of Calculation	
	• Use of $V = \frac{4}{3}\pi r^3$	(1) $\eta = \frac{\frac{4}{3}\pi \left(\frac{7.0\times10^{-3} \text{ m}}{2}\right)^{3} \times 9.81 \text{ m s}^{-2} \times (7800 - 1430) \text{kg m}^{-3}}{7.0\times10^{-3} \text{m} \cdot 0.8 \text{ m}}$	
	• Use of $v = \frac{vg(\rho_s - \rho_l)}{6\pi r\eta}$	(1) $ \eta = \frac{6\pi \times \frac{7.0 \times 10^{-3} \text{ m}}{2} \times \frac{0.8 \text{ m}}{5.3 \text{ s}}}{\eta = 1.13 \text{ Pa s}} $	3
	• $\eta = 1.1 (Pa s)$	(1)	4
(ii)	With the large sphere the speed will be greater so Stokes' law won't apply	(1)	2
	The flow is turbulent or not laminar	(1)	
(iii)	Any one • Can eliminate human reaction time		
	Can playback to measure <u>time</u> more accurately		1
	Can check that terminal velocity is reached	(1)	

Question Number	Answer			Mark
(a)(i)	Identifies that the two chocolates on the graph are at different temperatures (1)			
	The greater the ten	nperature of the chocolate, the lower the viscosity	(1)	2
(a)(ii)	Marked anywhere vertically above 10 ¹ Pa s. (1
(b)	Use of drag = upth	rust	(1)	
	Use of $F = 6\pi r \eta v$ (1)			
	$v = 2.0 \times 10^{-4} \mathrm{m s^{-1}}$ (1)			
(c)	$v = 6 \times \pi \times 1.0 \times 10^{-8} \text{ m}$ $v = 1.96 \times 10^{-4} \text{ m}$ s	Bubbles forming and not rising to the surface to break		:
	Solution	Reduce the viscosity of the chocolate Or heat up the chocolate	(1)	
	Explanation	The greater the viscosity: the greater the viscous drag Or the lower the (terminal) velocity	(1)	
		The bubbles rise slower OR	(1)	
		The lower the viscosity: the lower the viscous drag Or the greater the (terminal) velocity	(1)	
		The bubbles are able to rise to the top quicker Or the bubblies rise to the top in time before the chocolate sets	(1)	3
	(The 3 marking po	ints can be awarded if seen anywhere within part (c))		
	Total for question	1		9

Question Number	Answer	,	Additional Guidance	Mark
	• Use of $F = 6\pi \eta r v$	(1)	Example of calculation	6
	• Use of $U = mg$ and $\rho = \frac{r}{1}$	$\frac{n}{v}$ (1)	$F = 6\pi \times 1.0 \times 10^{-3} \text{ kg m}^{-1} \text{ s}^{-1} \times 2.5 \times 10^{-7} \text{ m} \times 10^{-7} \text{ m}$	v
	and $V = \frac{4}{3}\pi r^3$		$V = \frac{4}{3}\pi (2.5 \times 10^{-7} \text{ m})^3 = 6.5 \times 10^{-20} \text{ m}^3$	
	• Recognises $W = F + U$	(1)	$U = \rho_w Vg = 1000 \text{ kg m}^{-3} \times 6.5 \times 10^{-20} \text{ m}^3 \times 9.81$	m s ⁻¹
	• Use of $v = \frac{s}{t}$	(1)	THE SECOND ACCOUNTS OF THE SECOND SEC	200
	Either		$W = 2650 \text{ kg m}^{-3} \times 6.5 \times 10^{-20} \text{ m}^3 \times 9.81 \text{ m s}^{-1}$ $W = 1.7 \times 10^{-15} \text{ N}$	
	 t = 1.7 × 10⁷ s comparison with 6 months and conclusion consistent with 	(1)	$F = 1.7 \times 10^{-15} \text{N} - 6.4 \times 10^{-16} \text{N}$ $F = 1.1 \times 10^{-15} \text{N}$ $v = \frac{1.1 \times 10^{-15} \text{N}}{6\pi \times 1.0 \times 10^{-3} \text{kg m}^{-1} \text{s}^{-1} \times 2.5 \times 10^{-7}}$	m
	their answer Or		$v = 2.3 \times 10^{-7} \mathrm{m s^{-1}}$	
	 s = 3.3 - 3.6 m comparison with 4 m and conclusion consistent with their answer 	(1)	$t = \frac{4 \text{ m}}{2.3 \times 10^{-7} \text{ m s}^{-1}} = 1.7 \times 10^7 \text{ s}$ $t = 197 \text{ days which is 6.6 months}$ $\text{accept 1 month} = 28 \text{ to 31 days giving } t = 6.3 \text{ to } 7.0 \text{ months}$	

Question Number	Acceptable answers	Additional guidance	Mark
(i)	• Use of $\rho = \frac{m}{v}$ • $V = 8.1 \times 10^{-6} \text{ (m}^3\text{)}$	(1) $V = \frac{0.043 \text{ kg}}{5300 \text{ kgm}^{-3}}$ (1) $V = 8.1 \times 10^{-6} \text{ m}^{3}$	2
(ii)	 Use of A=πr² and V = Al Use of R = ρl/A R = 2.5 Ω (ecf from (a)(i)) 	Show that value gives 2.50 Ω Example of Calculation. (1) $A = \pi (6 \times 10^{-3} \text{ mm})^2 = 1.13 \times 10$ m^2 $8.1 \times 10^{-6} \text{ m}^3 = (1.13 \times 10^{-4} \text{ m}^3) \text{ I}$ $l = 0.0716 \text{ m}$ $R = \frac{(4.0 \times 10^{-3} \Omega \text{ m})(0.0716 \text{ m}^3)}{(1.13 \times 10^{-4} \text{ m}^3)}$ $R = 2.54 \Omega$	3