Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic : 5_Waves

Name of the Student:

Max. Marks: 17 Marks

Time: 17 Minutes

Mark Schemes

Q1

Question Number	Answer	Additional Guidance	
	• Use of $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ and $P = \frac{1}{f}$	MP4 dependent on MP3	4
	• Use of $P = P_1 + P_2$	Example of calculation	
	• (-) 0.6 D	Power of eye $P = \frac{1}{1.5 \text{ (m)}} + \frac{1}{0.024 \text{(m)}} = 42.3 \text{ D}$	
	Diverging	P of spectacles = 41.7 (D) - 42.3 (D) = -0.6 D diverging	

Q2

Question Number	Acceptable answers		Additional guidance	Mark
	calculation of a gradient	(1)	Example of calculation	
	• use gradient = d/λ	(1)	gradient = $\frac{4.0}{0.76}$ = 5.26	
	• use $d = 0.001 / 300$	(1)	The second secon	
	• wavelength = 6.3×10^{-7} m	(1)	$\frac{0.001}{300} = 5.26 \times \lambda$	
			wavelength = 6.3×10^{-7} m	4

Question Number	Acceptable Answer		Additional Guidance	Mark
	• Photoelectric equation stated in words Or $hf = \phi$ $+\frac{1}{2}mv_{\text{max}}^2$ with ϕ	(1)	MP1: Accept hf_0 for ϕ [with f_0 defined], and $E_{k \max}$ for $\frac{1}{2} m v_{\max}^2$	
	defined • Hence $eV_s = hf - \phi$ Or $E_{k \max} = hf - \phi$ and $E_{k \max} = eV_s$	(1)	MP2: eV_s does not have to be the subject of the equation	
	• Compare with $y = mx + c$	(1)		
	 So plot a graph of V_s against f Or plot a graph of eV_s against f 	(1)	MP5 is dependent	5
	• Gradient = $\frac{h}{e}$ Or gradient = h	(1)	upon MP4	

Q4

Question Number	Acceptable Answers		Additional guidance	Mark
(i)	An explanation that makes reference to the following:	*10		
	Path lengths (A-O and B-O) are equal Or Path difference is zero	(1)		
	Will arrive in phase Or phase difference is zero	(1)		3
	(Bright line is position of) <u>constructive</u> interference/superposition	(1)		
(ii)	• 600 nm Or 600 × 10 ⁻⁹ m Or 6.0 × 10 ⁻⁷ m Or one wavelength Or λ	(1)	Do not accept (nλ)	
			Accept any correct equivalent value	1