Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic : 5_Waves

Name of the Student:

Max. Marks : 25 Marks Time : 25 Minutes

Mark Schemes

Q1

Question Number		Acceptable Answers		Additional guidance	Mark
(i)		Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$ using angle of incidence = 20° (1) $r(\text{blue}) = 31.3^{\circ} \text{ and } r(\text{red}) = 31.1^{\circ}$	sinr(b	le of Calculation plue) = 1.517sin20 = e)=sin ⁻¹ (0.519) = 31.3°	
		Or Calculates difference between $r(\text{blue}) \text{ and } r(\text{red}) = 0.2^{\circ}$ (1)	sinr(r	red) =1.509sin20 = 0.516 =sin ⁻¹ (0.516) = 31.1°	
	•	Compares their answer to an uncertainty of protractor of 0.5° with conclusion consistent with their answer (1)	31.3° - 31.1° = 0.2° 0.2° < 0.5° so protractor is unsuitable		3
(ii)	Either		IR.	Example of Calculation	100
		Use of $sinC = \frac{1}{n}$ 41.5° Compares their answer to 35° and	(1) (1)	$\sin C = \frac{1}{1.509} = 41.5^{\circ}$	
	ľ	concludes that red light is not totally internally reflected or conclusion consistent with their answer	(1)	C > 35° so red light is not totally internally reflected	
	Or				
		Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$ with 35° and $n=1$ 60° Compares their answer to 90° with conclusion that red light is refracted or	(1) (1)		
		conclusion consistent with their answer	(1)		3

Question Number	Acceptable Answers		Additional guidance	Mark
(i)	Focus image of distant/far object on to a screen	(1)	MP2 dependent on MP1	
	 Measure distance from lens to screen 	(1)		
	Or			
	Use <u>parallel</u> rays of light	(1)		2
	 Measure distance from lens to the point where the rays converge 	(1)		
(ii)	Greater <u>refraction</u>	(1)		
	 To converge (parallel) rays at a point closer to the lens 	(1)		2
(iii)	Photograph 2 has a greater magnification	(1)		
	 so v is greater 	(1)		
	 since u is constant 	(1)		
	 So f is greater Hence photograph 2 taken with lens of focal length 200 mm 	(1) (1)	MP5 dependent on MP2 and MP4	5

Question Number	Answer		Mark	
(a)	Human body contains water molecules	488		
	Or body has same structure as food	(1)		
	So cells/tissues would gain internal energy	(1)	2	
	(Accept cells/tissues would be heated)	(-)	578)	
(b) (i)	Waves spread out			
	After passing through a gap Or after passing around an obstacle	(1)	2	
(b)(ii)	Use of $c = f\lambda$ with $c = 3.0 \times 10^8 \text{ m s}^{-1}$	(1)		
	$\lambda = 0.12 \text{ m}$	(1)	2	
	Example of calculation			
	$\lambda = 3.0 \times 10^8 \mathrm{m s^{-1}} \div 2.5 \times 10^9 \mathrm{Hz}$			
	$\lambda = 0.12 \text{ m}$			
(b)(iii)	Diameter = 2mm	(1)	1	
*(b)(iv)	(QWC - Work must be clear and organised in a logical manner using technical wording where appropriate)			
	Diffraction greatest when wavelength is about the same as gap size	(1)		
	Diameter of holes much greater than wavelength of light and diameter of holes			
	less than microwave wavelength	(1)		
	so no/little diffraction of light takes place			
	Or so microwave radiation still diffracted through large angle but intensity is			
	very small.	(1)	3	
	MP3 must follow on from relevant part of MP2			