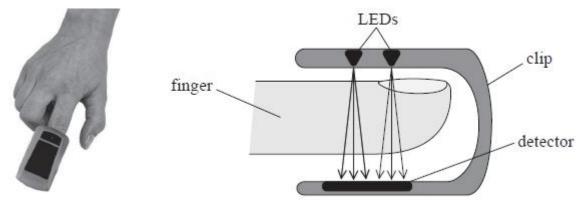
Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic: 5_Waves

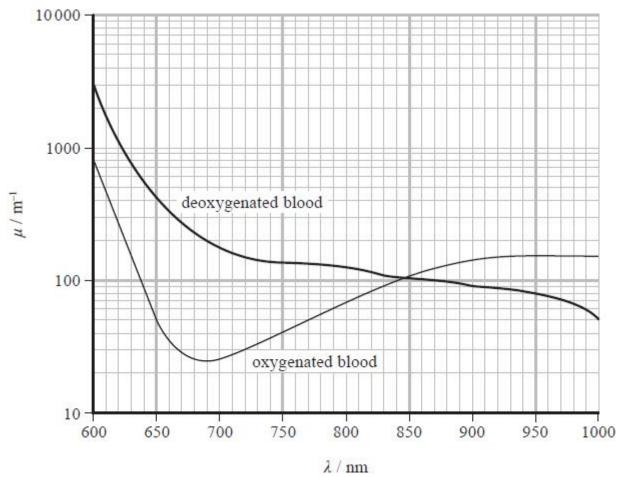

Name of the Student: Max. Marks: 21 Marks

Time: 21 Minutes

Q1.

An oximeter is a device used in hospitals to monitor the oxygen level in a patient's blood.

In an oximeter, two light-emitting diodes (LEDs) are mounted opposite light sensors in a clip and attached to the patient's finger. One of the LEDs produces red light and the other produces infrared.


The intensity I of electromagnetic radiation received by the detector, after passing through a thickness x of blood, is given by

$$I = I_0^{e-\mu x}$$

where I_0 is the intensity that would have been received if the blood were not present and μ is the attenuation coefficient of blood.

The red LED emits visible light of wavelength 650 nm and the infrared LED emits infrared of wavelength 950 nm.

The graph shows how μ varies with wavelength λ for oxygenated blood and deoxygenated blood.

 I_0 for the infrared LED is 1.8 W m⁻².

	(3)
<i>I</i> =	
/ —	

Calculate I for the infrared after passing through 1.4 mm of oxygenated blood.

(Total for question = 3 marks)

E.

A helium-neon gas	laser is often	used in the la	aboratory as a	a source of h	nigh intensity,	coherent,	monochron	natic
light.								

The diagram shows some of the energy levels above the ground level E₃ for helium atoms and for neon atoms. The highest shown levels for helium atoms and neon atoms are almost identical.

_____ 20.61 eV

2			E ₂ —	18.7	0 eV
E ₁ -	helium	0 eV	E ₁ —	neon 0 eV	7
speed with ne the neon aton level E ₂ they	eon atoms. Because the ns. The neon atoms b	ne energies are so si ecome excited in tui	imilar, the energ	through the laser. They collide by is transferred from the heliun s the neon atoms subsequently	n atoms to
					(2)
(b) Calculate	the frequency of the	photons produced a	is the neon aton	ns drop from level E ₃ to level E	(3)

(d) The photograph shows a device for making a vertical slit with variable width.

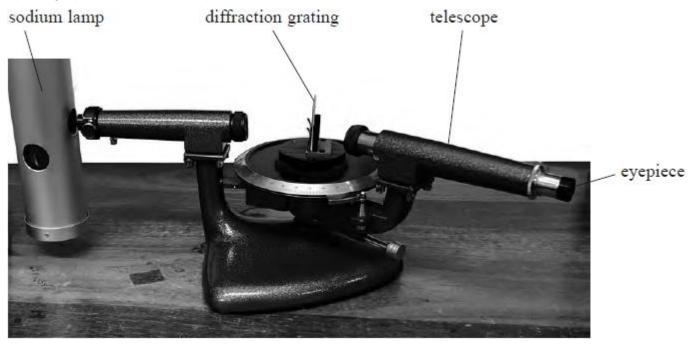
Suggest the source of the energy to make up this difference.

(c) An electron in level E₃ of neon has 0.05 eV more energy than an electron in level E₂ of helium.

(1)

Frequency =

_____ 20.66 eV


© THORLABS, Inc.

When the slit is fully open a laser beam is shone through it and a single point of light is seen on a screen. As the slit is reduced in width the point of light becomes a horizontal line that gets longer as the slit gets narrower.

	Explain this observation	
		(3)
• • •		

(Total for question = 9 marks)

The photograph shows a school spectrometer.

The spectrometer allows parallel rays of light to be passed through a diffraction grating and the resulting angles of diffraction to be measured.

The diagram shows some of the energy levels in a sodium atom.

--- 0.00 eV

-1.02 eV -1.39 eV

— −1.95 eV

— −3.04 eV

--- -5.14 eV

Add an arrow to the diagram to show the transition involved in the emission of yellow light of wavelength 589 nm. Show your working below.

(4)

(Total for question = 4 marks)
Q4.
Phosphogypsum is a by-product in the manufacture of fertiliser. It is slightly radioactive because of the presence of radium-226, a radioisotope with a half-life of 1600 years.
It must be stored securely as long as the activity of the radium-226 it contains is greater than 0.4 Bq per gram of phosphogypsum.
Radium-226 decays to radon-222 by alpha emission.
Determine the energy released in MeV in the decay of a single nucleus of radium-226.
(5)
mass of radium-226 nucleus = 225.97713 u mass of radon-222 nucleus = 221.97040 u mass of α particle = 4.00151 u
Energy released = MeV
(Total for question = 5 marks)

(1 otal for question = 5 marks)