Practice Question Set For A-Level

Subject: Physics

Paper-3 Topic : Practical Skills

Name of the Student:	 Time : 25 Minutes
Q1.	
Genuine crystal balls are made from clarified quartz rather than glass. A student	was given a small crystal ball

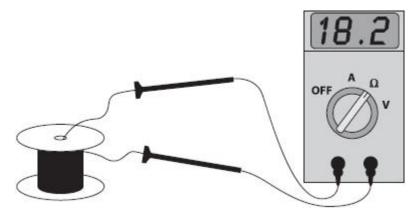
The student measured the diameter of the crystal ball using vernier calipers with a resolution of 0.01 cm. She measured the mass of the crystal ball using a balance with a resolution of 1 g.

The table gives the densities of clarified quartz and glass.

and wanted to know whether it was genuine.

Determine whether the crystal ball was genuine.

Material	Density / kg m ⁻³
Clarified quartz	2650
Glass	2590


(6)

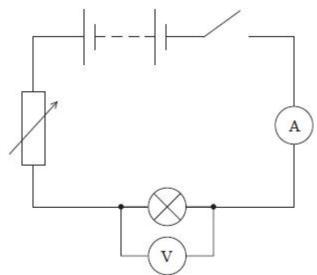
Q2.

A student carried out an experiment to determine the resistivity of nichrome wire.

He used an ohmmeter to measure the resistance of a length of nichrome wire as shown.

(Total for question = 6 marks)

The diameter of the wire was measured as 0.27 mm \pm 0.01 mm. The length of the wire was measured as 1.25 m \pm 0.05 m.


Calculate the minimum value of resistivity possible from the student's data.

	(4)
Minimum resistivity =	

(Total for question = 4 marks)

Q3.

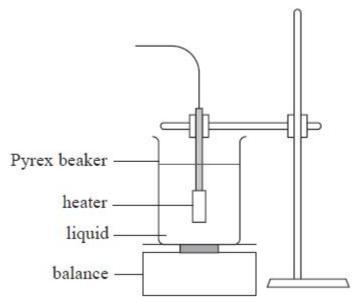
A student set up the circuit shown and measured the current *I* through the filament lamp for a range of values of potential difference (p.d.) *V*.

The student's data is shown in the table.

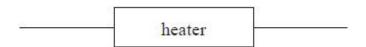
V/V	I/A
3.0	0.6
4.0	0.75
6.0	1.00
8.0	1.20
10.0	1.35
12.0	1.5

Using the circuit shown the student was unable to obtain data for p.d.s less than 2.5 V.

Draw a diagram of a circuit the student could have used to enable a full range of p.d.s from 0 to 12 V to be investigated.


(2)

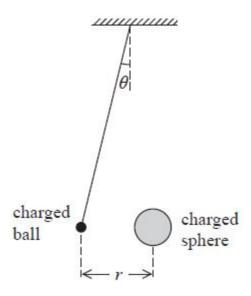
(Total for question = 2 marks)


Q4.

A student determined the latent heat of vaporisation of a liquid using an electrical heater to boil the liquid in a Pyrex beaker.

The apparatus used is shown below.

She connected the heater into a circuit and took measurements of the potential difference V and the current I for

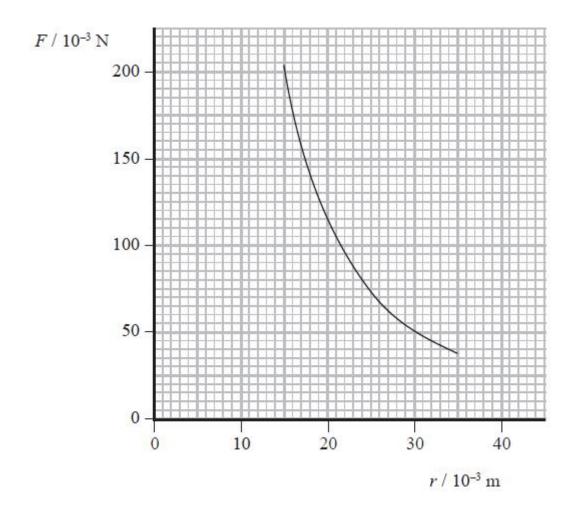


(Total for question = 2 marks)

Q5.

A student carries out an experiment to investigate the force acting between two charged objects. A lightweight negatively-charged ball is freely suspended from the ceiling by an insulating thread. The ball is repelled by a negatively-charged sphere that is placed near it on an insulated support.

The angle of deflection is θ and r is the distance between the centres of the ball and the sphere.



(a) (i) Draw a free-body force diagram for the suspended ball.

•

(ii) The weight of the suspended ball is <i>W</i> .	
Show that the force of repulsion F on the suspended ball is given by	
$F = W \tan \theta$	
	(2)

(b) (i) The student can increase the magnitude of the force by moving the sphere towards the suspended ball. She takes pairs of measurements of r and θ and calculates the magnitude of the force F. She then plots a graph of F against r.

Use readings from the graph to demonstrate that the relationship between <i>F</i> and <i>r</i> obeys an inverse square law.
(4)
(ii) The charge on the sphere is 100 times greater than the charge on the ball. Calculate the charge on the ball.
(3)

Charge =
(Total for question = 11 marks)