Practice Question Set For A-Level

Subject: Physics

Paper-3 Topic : Practical Skills

Name of the Student:

Max. Marks: 17 Marks

Time: 17 Minutes

Mark Schemes

Q1.

Question Number Acceptable Answer			Additional Guidance	Mark
(i)	 set up diffraction grating at right angles to light from laser Or set up grating parallel to screen measure the distance between the diffraction grating and the screen measure the distance between 1st order images on the screen 	(1) (1) (1)	An annotated diagram could score these marks MP3 accept between other correct specified orders.	3

Question Number	Acceptable Answer	Additional Guidance	Mark
(ii)	 use of d sin θ = nλ Calculation of one of the diffraction angles (for any n) Attempt to calculate a difference in the angles Or statement that the two angles are 	(1) MP4 dependent on MP3 Example of calculation: (1) $\sin \theta_1 = \frac{656.2 \times 10^{-9} \text{ m}}{2.2 \times 10^{-6} \text{ m}}$ $\therefore \theta_1 = 17.354^{\circ}$	
	very similar So (accurate) measurement would be very difficult Or the difference in wavelength could not be determined with this grating	(1) $\sin \theta_2 = \frac{656.0 \times 10^{-9} \text{ m}}{2.2 \times 10^{-6} \text{ m}}$ $\therefore \theta_1 = 17.348^{\circ}$ $\therefore \Delta \theta = 17.354^{\circ} - 17.348^{\circ} = 0.006^{\circ}$	4

Q2.

Question Number	Acceptable answers		Additional guidance	Mark
(i)	 Use of R=\rho I/A Using A=0.5×28 (×10⁻⁶ m²) Use of V=IR I = 22 (mA) 	(1) (1) (1) (1)	Example of calculation $R = \frac{1.6\Omega \text{m} \times 0.6 \times 10^{-3} \text{ m}}{0.5 \times 10^{-3} \text{m} \times 28 \times 10^{-3} \text{m}}$ $R = 68.6\Omega$ $1.5V = I \times 68.6\Omega$ $I = 1.5V / 68.6\Omega$ $I = 0.022\text{A} = 22\text{mA}$	4

Question Number	Acceptable answers		Additional guidance	Mark
(ii)	 Use of F=BIL ecf values from (i) Force = 5.3 × 10⁻⁶ N 	(1)	Use of show that values gives $4.8 \times 10^{-6} \mathrm{N}$ Example of calculation $F = 0.40 \mathrm{T} \times 0.022 \mathrm{A} \times 0.6 \times 10^{-3} \mathrm{m}$ $F = 5.3 \times 10^{-6} \mathrm{N}$	2

Q3.

Question Number	Acceptable Answer		Additional Guidance	Mark
	 Coherent waves have a constant phase relationship 	(1)	MP2-4: accept wavelength for frequency	
	 Coherent waves have the same frequency 	(1)		
	 However, for each frequency present the (two) reflected waves are coherent 	(1)	MP4: hence with a white light source you would see a set of coloured rings	4
	 Hence with a non- monochromatic source, a set of dark rings for each frequency would be produced 	(1)		