Practice Question Set For A-Level

Subject: Physics

Paper-3 Topic : Practical Skills

Name of the Student:

Max. Marks: 16 Marks

Time: 16 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers	Additional guidance $\frac{R}{2}$	Mark 1
	A uses the parallel resistors equation $\frac{1}{R_T} = \frac{1}{R} + \frac{1}{R} = \frac{2}{R}$		
	B assumes resistors in parallel have the same total R as each individual R C is the addition of both resistances as if they were in series D is the product of both resistances		

Q2.

Question Number	Acceptable answers	Additional guidance	Mark
	С	mgh	1
	A uses the distance AB rather than height B uses a component of height D uses a component of height	-	

Q3.

Question Number		Acceptable Answer		Additional Guidance	Mark
	•	The measurement of resistance has an uncertainty of 0.6 %	(1)	MP1 accept use of 0.05 giving 0.3 % Example of calculation: Uncertainty in	
	•	The measurement of the length has an uncertainty of 4 %	(1)	$R = \frac{0.1\Omega}{18.2\Omega} \times 100\% = 0.55\%$	
	•	The measurement of the diameter has an uncertainty of 4 %	(1)	Uncertainty in $L = \frac{0.05 \text{ m}}{1.25 \text{ m}} \times 100\% = 4.0\%$	
	•	The % uncertainty in diameter is doubled giving the greatest amount of uncertainty into the value for the resistivity	(1)	Uncertainty in $d = \frac{0.01 \text{m}}{0.27 \text{m}} \times 100\% = 3.7\%$	4

Q4.

Question Number		Acceptable Answer		Additional Guidance	Mark
	•	Attempt to calculate gradient $k = (24.0 \rightarrow 25.0) \text{ N m}^{-1}$	(1) (1)	Accept $k = (0.24 \rightarrow 0.25) \text{ N cm}^{-1}$ Example of calculation: gradient= $\frac{(1.6-0) \text{ N}}{(6.5-0) \times 10^{-2} \text{m}} = 24.6 \text{ N m}^{-1}$	2

Q5.

Question Number	Acceptable answers	Additional guidance	Mark	
rvumber	B The two forces acting on the mass are its weight (vertically down) and a tension in the thread.		1	
	A assumes there is a centripetal force only C assumes there is an additional centripetal force D assumes the additional centripetal force acts away from the centre of the circle			

Q6.

Question Number	Acceptable Answer		Additional Guidance	Mark
(i)	Mean straight line with positive intercept on the y-axis	(1)		1

Question Number	Acceptable Answer		Additional Guidance	Mark
(ii)	• $C = \frac{K}{4\pi d^2}$ used to show $\frac{1}{\sqrt{C}} \propto d$ Or identifies gradient as $\sqrt{\frac{4\pi}{K}}$ which is constant	(1)		
	 Since graph is a straight line, data is consistent with this 	(1)		
	 However, line doesn't pass through the origin 	(1)		
	 This indicates a <u>systematic</u> error in measuring the distance 	(1)		4

Q7.

Question Number		Acceptable Answer		Additional Guidance	Mark
	•	α-particles would only travel a few cm (in air), and so wouldn't reach the GM-tube	(1)	Accept a reference to α-particles not passing through the side of the tube (even if they reached it when d was small) and so not contributing to the count (rate)	
	•	β -particles would probably not pass through the sides of the GM-tube, and so wouldn't be detected so suggestion is correct.	(1)	For 2 marks expect a valid conclusion, as well as a statement of the likelihood of the α -particles and β -particles contributing to the count (rate)	2