Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: Atomic Structure (High Demand)


ax. Ma	rks : 18 Marks		Time : 18 Min
Q1. Lant	thanum-140 is a radio	pactive isotope.	
(a)	A nucleus of lantha	num-140 emits gamma r	adiation.
	What happens to the	ne mass number and the	charge of the nucleus when gamma radiation is
	Tick (✔) one box.		
	Mass number	Charge	
	Decreases	Decreases	
	Decreases	Stays the same	
	Stays the same	Decreases	
	Stays the same	Stays the same	
(b)	Why is it difficult to	detect gamma radiation?	
(c)	Activity is the rate a	t which a radioactive sou	rce decays.
	A teacher measure (G-M) tube.	d the count-rate from a s	ample of lanthanum-140 using a Geiger-Muller
	Explain why the cou	unt rate was less than the	e activity of the sample of lanthanum-140

(2)

The teacher investigated how the thickness of lead affected the amount of gamma radiation that could pass through it.

Figure 1 shows the apparatus.

Figure 1

table shows	Thickness of lead in cm	Count rate in counts per second	
	0.5	110	
	1.0	60	
	1.5	33	
	2.0	18	
	2.5	10	
The teache lead.	r concluded that the co	unt rate was not inver	sely proportional to the thickne
Explain why	y the teacher was corre	ect.	
	ta in the table above.		

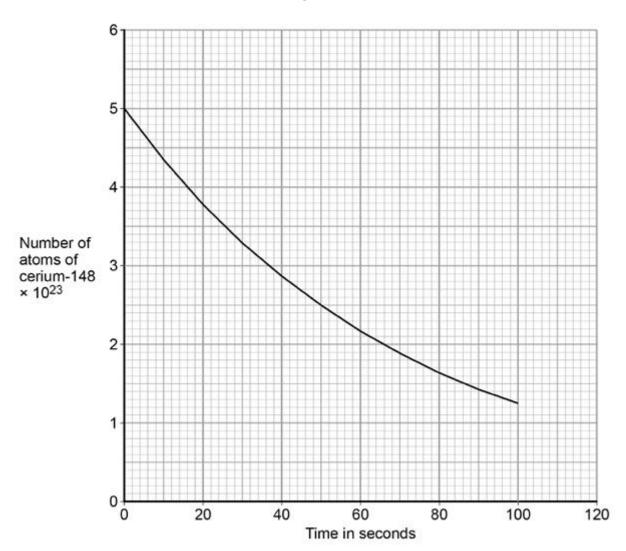
(2)

(f) Lanthanum-140 can also emit beta radiation and change into cerium.

Complete the equation showing the decay of lanthanum (La) 140 into cerium (Ce).

(2)

(3)


There are other isotopes of cerium which are radioactive.

Different isotopes of cerium have different half-lives.

The half-life of an isotope can be found by studying how the number of atoms changes over time.

Figure 2 shows how the number of atoms of cerium-148 in a 120 g sample changes over time.

Figure 2

(g) Determine the ratio of the number of cerium atoms in the sample when it was 100 seconds old compared with when the sample was 350 seconds old.

Use data from Figure 2.

	Ratio =	
Determine the activity		
Determine the activity Use Figure 2 .	Ratio = of the sample of cerium when the sample was 20 seconds old.	
·		
·		
Use Figure 2 .	of the sample of cerium when the sample was 20 seconds old.	
Use Figure 2 .	of the sample of cerium when the sample was 20 seconds old.	
Use Figure 2 .	of the sample of cerium when the sample was 20 seconds old.	
Use Figure 2 .	of the sample of cerium when the sample was 20 seconds old.	
Use Figure 2 .	of the sample of cerium when the sample was 20 seconds old.	