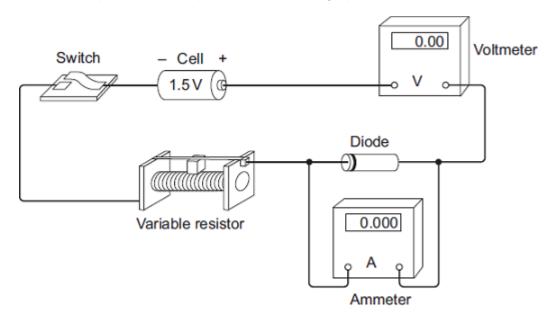
Practice Question Set For GCSE

Subject: Physics

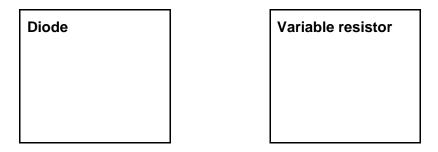
Paper-1 Topic: Electricity (High Demand)

	the Student:rks : 25 Marks	Time : 25 Minutes
1. Sola	ar panels are often seen on the roofs of houses.	
(a)	Describe the action and purpose of a solar panel.	
		(2)
(b)	Photovoltaic cells transfer light energy to electrical energy.	
	In the UK, some householders have fitted modules containing photovoltaic cells their houses.	s on the roofs of
	Four modules are shown in the diagram.	
	Module containing photovoltaic cells	
	The electricity company pays the householder for the energy transferred.	
	The maximum power available from the photovoltaic cells shown in the diagram	n is 1.4 × 10 ³ W.
	How long, in minutes, does it take to transfer 168 kJ of energy?	

(i)	The diagram shows two readings of this electricity meter taken three months apart. The readings are in kilowatt-hours (kWh).					
	21 November 0 0 0 4 4					
	21 February 0 0 1 9 4					
	Calculate the energy transferred by the photovoltaic cells during this time period.					
	Energy transferred = kWh					
(ii)	The electricity company pays 40p for each kWh of energy transferred.					
	Calculate the money the electricity company would pay the householder.					
	Money paid =					
(iii)	The cost of the four modules is £6000.					
	Calculate the payback time in years for the modules.					
	Payback time = years					
(iv)	State an assumption you have made in your calculation in part (iii).					
	ne northern hemisphere, the modules should always face south for the maximum transfer nergy.					


_____ Time = _____ minutes

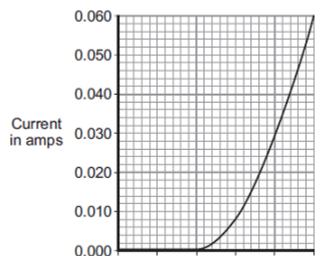
(2)


(2)

Q2.

(a) A student set up the circuit shown in the diagram. The student uses the circuit to obtain the data needed to plot a current - potential difference graph for a diode.

(i) Draw, in the boxes, the circuit symbol for a diode and the circuit symbol for a variable resistor.



(ii) The student made two mistakes when setting up the circuit.

What **two** mistakes did the student make?

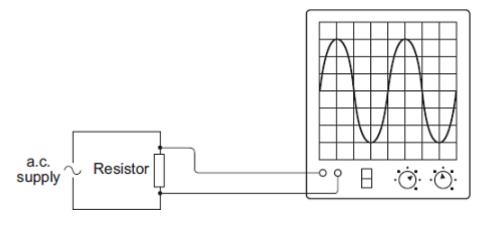
1			
2			

(b) After correcting the circuit, the student obtained a set of data and plotted the graph below.

Potential difference in volts

(i)	At what potential	difference did the	diode start to	conduct an	electric current?
-----	-------------------	--------------------	----------------	------------	-------------------

_____V

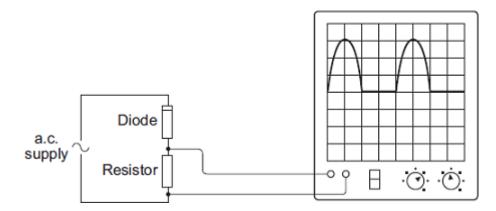

(1)

(ii) Use data from the graph to calculate the resistance of the diode when the potential difference across the diode is 0.3 V.

Resistance = _____ ohms

(3)

(c) The diagram shows the trace produced by an alternating current (a.c.) supply on an oscilloscope.



Each horizontal division on the oscilloscope screen represents a time of 0.01s.

(i) Calculate the frequency of the a.c. supply.

(2)

(ii) A diode is now connected in series with the a.c. power supply.

wny does the	e diode cause	e tne trace (on the osciii	oscope scre	en to change?

(2)

(Total 12 marks)