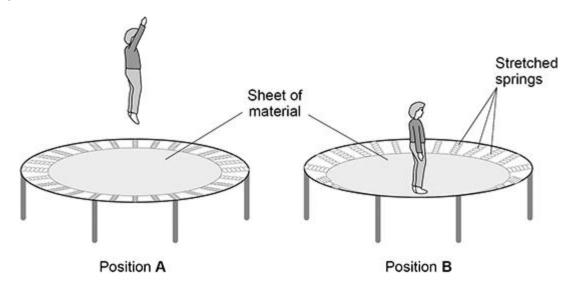
Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: Energy (High Demand)



Name of the Student:	
Max. Marks : 22 Marks	Time : 22 Minutes
-	-

Q1.

A trampoline is made from a sheet of material held in place by stretched springs.

The figure below shows a child on a trampoline.

(a) Position A shows the child's maximum height above the trampoline.

Position **B** shows the lowest position reached by the child when landing on the trampoline.

Describe the changes to the stores of energy of the:

- child
- springs
- surroundings

as the child moves from position A to position B.

Child			
Springs			
-1 5			

Surroundings	
When the child is at position A , each trampo	bline spring is stretched by 0.056 m
The elastic potential energy of each spring is	
	otential energy of each spring increases to 8.1 J
Calculate the extension of each spring wher	the child is at position B .
Use the Physics Equations Sheet.	
	
	Extension = m
As the child bounces on the trampoline the c	child does work.
What is the work done by the child equal to?	?
Tick (✓) one box.	
The average force applied by the child	
The maximum force applied by the child	
The total energy store of the child	

		(1)
(Total	10	marks)

Q2.

The photograph below shows a sailing boat crossing an ocean.

There is a wind turbine on the boat.

	to to a wind tarbino on the south	
a)	The wind turbine generates electricity to charge a battery on the boat.	
	Name one other renewable energy resource that could be used on the boat to generate electricity.	
		('
b)	The boat also has a generator that burns a fossil fuel.	
	The battery can be charged by either the wind turbine or the generator.	
	Give two reasons why this is useful.	
	1	
	2	
		(2
c)	Explain one environmental impact of using fossil fuels to generate electricity.	

	-
The kinetic energy of the boat is 81 kJ.	
mass of boat = 8000 kg	
Calculate the speed of the boat.	
	-
	-
	-
	-
Speed =	m/s
Speed = As the boat passes over a wave, the gravitational potential energy of the boat increase	
Speed = As the boat passes over a wave, the gravitational potential energy of the boat increase 600 J.	
Speed = As the boat passes over a wave, the gravitational potential energy of the boat increas 600 J. mass of boat = 8000 kg	ses by 19
As the boat passes over a wave, the gravitational potential energy of the boat increas 600 J. mass of boat = 8000 kg gravitational field strength = 9.8 N/kg	ses by 19
As the boat passes over a wave, the gravitational potential energy of the boat increas 600 J. mass of boat = 8000 kg gravitational field strength = 9.8 N/kg	ses by 19
As the boat passes over a wave, the gravitational potential energy of the boat increas 600 J. mass of boat = 8000 kg gravitational field strength = 9.8 N/kg	ses by 19
As the boat passes over a wave, the gravitational potential energy of the boat increas 600 J. mass of boat = 8000 kg gravitational field strength = 9.8 N/kg	ses by 19
As the boat passes over a wave, the gravitational potential energy of the boat increas 600 J. mass of boat = 8000 kg gravitational field strength = 9.8 N/kg	ses by 19 e wave.