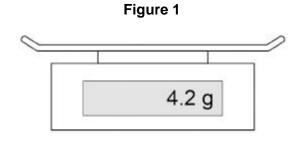
Practice Question Set For GCSE

Subject : Physics

Paper-1 Topic: Particle Model Of Matter (High Demand)

(1)


Name of the Student:	
Max. Marks: 27 Marks	Time : 27 Minutes

Q1.

A student determined the density of a cube made of bronze.

The student used a balance to measure the mass of the bronze cube.

Figure 1 shows the balance before the cube was added.

(a) What type of error is shown on the balance?

(1)

(b) How could the student get a correct value for the mass of the cube from the balance?

(c) The student measured the length of the bronze cube using Vernier callipers and then using a

Table 1 shows the results.

micrometer.

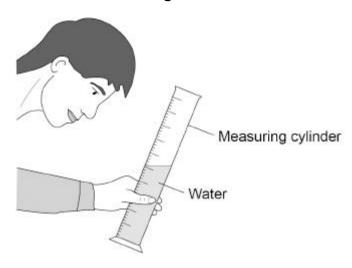
Table 1

Equipment	Length in mm
Vernier callipers	20.1
Micrometer	20.14

Complete the sentence.

The results in **Table 1** show that the Vernier callipers and the micrometer have a different _____.

The student wanted to determine the density of a bronze coin.


The student had several identical coins.

The volume of each coin was very small.

(d) The student added water to a measuring cylinder.

Figure 2 shows the student reading the volume of water in the measuring cylinder.

Figure 2

Give **two** changes the student should make to increase the accuracy of the volume measurement.

							_
2							_
Describe how t	na student d	could use a	displacem	nent method	to determin	e an accurat	e value for
Describe how the volume of			a displacem	nent method	to determin	e an accurat	e value for
			a displacem	nent method	to determin	e an accurat	e value for _
			a displacem	nent method	to determin	e an accurat	e value for _ _
			a displacem	nent method	to determin	e an accurat	e value for - -

(f) Old penny coins were made from a disc of bronze.

New penny coins are made from a disc of a different metal.

(3)

Figure 3 shows a disc of metal.

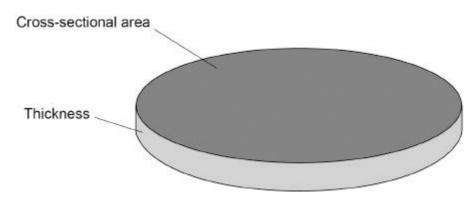


Table 2 shows information about the discs used to make each coin.

Table 2

Disc	Mass in g	Density in g/cm ³	Thickness in cm
Old penny	3.6	8.9	0.16
New penny	3.6	x	0.17

The discs used to make the old and the new coins have the **same** cross-sectional area.

Calculate value X in Table 2.

Give your answer to 2 significant figures.

The volume of a disc can be calculated using the equation:

	volume o	of a disc	= cross-	section	al area ×	thicknes	SS	

Density (2 significant figures) = _____

g/cm³

(Total 13 marks)

(5)

Ice cream is made by cooling a mixture of liquid ingredients until they freeze.

Tick (✓) one box.

They are stationary.	(3)
They move freely.	0

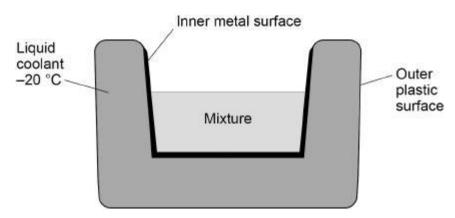
They vibrate about fixed positions.

(1)

(b) How do the kinetic energy and the potential energy of the particles change as a liquid is cooled and frozen?

Tick (✓) one box.

Kinetic energy	Potential energy
Decreases	Decreases
Decreases	Does not change
Does not change	Decreases
Does not change	Does not change


(1)

The diagram below shows a bowl used for making ice cream.

The walls of the bowl contain a liquid coolant.

The bowl is cooled to -20 °C before the mixture is put in the bowl.

The bowl causes the mixture to cool down and freeze.

Лe	etal	
Pla	astic	
Γh	e liquid coolant has a freezing point below –20 °C	
Ξx	plain one other property that the liquid coolant should have.	
Γh	e initial temperature of the mixture was +20 °C. The mixture froze at -1.5 °C.	
	otal of 165 kJ of internal energy was transferred from the mixture to cool and freeze	ı it
		, 16.
	ecific heat capacity of the mixture = 3500 J/kg °C	
p	ecific latent heat of fusion of the mixture = 255 000 J/kg	
Са	alculate the mass of the mixture.	
Эi۱	ve your answer to 2 significant figures.	

_		
_		
<u> </u>		
kg	Mass (2 significant figures) =	
(6)		
(Total 14 marks)		