Practice Question Set For GCSE

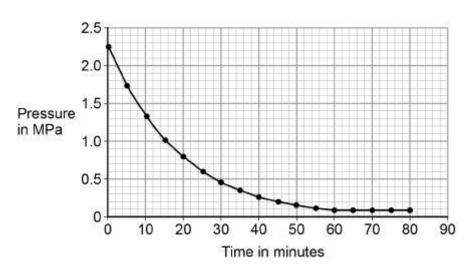
Subject: Physics

Paper-1 Topic: Particle Model Of Matter (High Demand)

Max. Marks : 27 Marks	Time: 27 Minutes
Q1. Figure 1 shows a diver.	
Figure 1	
Canister of compressed air	
(a) Which two sentences describe the movement of the air particles in the canister?	?
Tick two boxes.	
They vibrate about a fixed position.	
They move in random directions.	
The motion of all the particles is predictable.	
They move with a range of different speeds.	
They move in circular paths.	
	(2)
(b) The temperature of the air inside the canister increases.	
What happens to the movement of the air particles?	

(2)

(c) It could be dangerous if the temperature of the air inside the canister increased by a large amount.


Explain why.								

A canister of air was tested to find out how the pressure changed when it was used by a diver.

- Air was allowed to escape from the canister.
- The pressure of the air in the canister was recorded every 5 minutes for 80 minutes.

Figure 2 shows the results.

Figure 2

(d) Estimate the atmospheric pressure.

Use Figure 2

Atmospheric pressure = _____ MPa

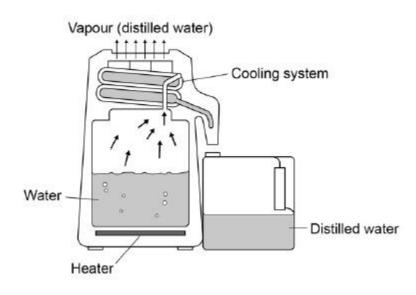
(1)

(e) Divers can safely stay underwater until the pressure of the air in the canister has reduced to 25% of its original value.

Determine the maximum time the diver can safely stay underwater.

Use Figure 2

Time = _____ minutes


- (f) What happens to the volume of the air when it is released from the canister?

 (1)

 (Total 10 marks)
- Q2.

Figure 1 shows a water distiller which is used to purify water.

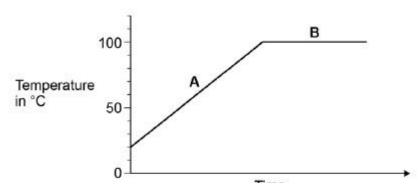
Figure 1

The distiller boils water and then condenses most of the water vapour back to water.

The water distiller is filled with 5.0 kg of water at 20 °C

The specific heat capacity of water = 4 200 J/Kg °C

Calculate the energy needed to raise the temperature of the water to 100 °C


Use the Physics Equations sheet.

Energy = _____

(3)

Figure 2 shows how the temperature of the water in the distiller changes with time.

Figure 2

		-
		-
		-
		-
		-
		_
		-
When the wa	ter drops to a low level, the heater automatically switches off.	-
	nter drops to a low level, the heater automatically switches off. problem would be caused if the heater did not automatically switch off.	-
		-
		-
		-

(d) The distiller is connected to the mains by a three-core cable.

The wires are covered by different coloured insulation.

What colour is the insulation covering each of the wires?

Live wire _____

Neutral wire _____

Earth wire _____

(e) Which statement gives the purpose of the earth wire?

(2)

	Tick one box.		
	It carries an alternating potential difference.		
	It melts if the current in the circuit is too high.		
	It provides a connection to complete the circuit.		
	It stops the casing of the appliance becoming live.		
			(1
(f)	The heating element has a power of 2.5 kW		
	The resistance of the heating element is 17 $\boldsymbol{\Omega}$		
	Calculate the current in the heating element.		
	Give your answer to 2 significant figures.		
	Write any equations that you use.		
		Current =	A
			/6

(Total 17 marks)