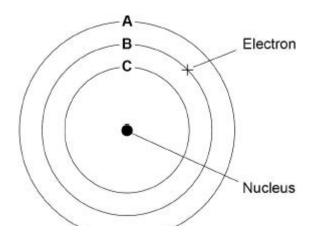
Practice Question Set For GCSE

Subject: Physics


Paper-1 Topic: Particle Model Of Matter (Low Demand)

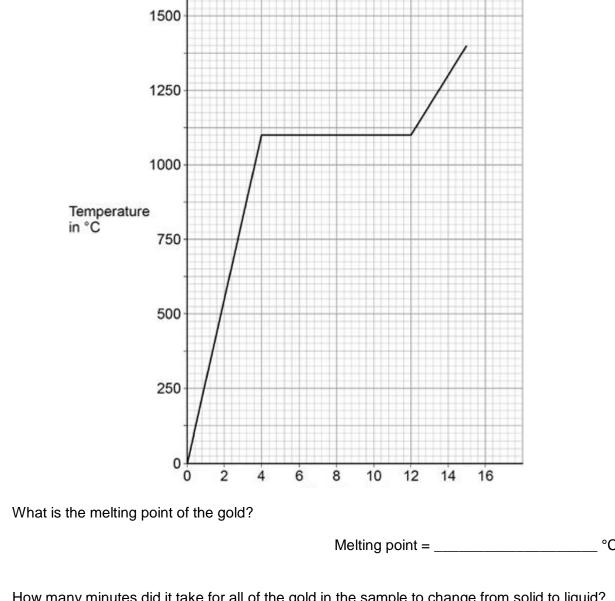
	the Student:rks : 23 Marks	Time : 23 Minutes
Q 1.		
In a	n experiment, a beam of alpha particles was directed at a thin sheet of gold foil	
(a)	Most of the alpha particles passed straight through the gold foil.	
	Alpha particles which passed close to the nucleus of a gold atom did not pass	straight through.
	What happened to the alpha particles which passed close to the nucleus of a	gold atom?
(b)	The results suggested that the diameter of the nucleus of a gold atom is 6000 of the atom.	of the diameter
	The diameter of a gold atom is 0.18 nm	
	Calculate the diameter of a gold nucleus in nm	
		nm
(c)	Further experiments showed that gold nuclei are surrounded by electrons in clevels.	(2

Figure 1

Figure 1 shows three of the energy levels around the nucleus of a gold atom.

The electron in energy level **B** absorbs electromagnetic radiation.

Which energy level will the electron be in after it has absorbed the electromagnetic radiation?


Tick (✓) one box.

A ____ B ___ C ___

(1)

Figure 2 shows how the temperature of a small sample of gold changes as it is heated from a solid to a liquid.

Figure 2

	Melting point =°C	(1)
(e)	How many minutes did it take for all of the gold in the sample to change from solid to liquid?	
	Time taken = minutes	(1)
(f)	What does the gradient of the graph in Figure 2 represent?	
	Tick (✔) one box.	
	The internal energy of the gold	
	The rate of change of temperature of the gold	
	The specific heat capacity of the gold	

(1)

(Total 7 marks)

Q2.

Radioactive nuclei can emit alpha, beta or gamma radiation.

(a)	Which type of radiation is the most penetrating?			
	Tick one box.			
	Alpha (α)			
	Beta (β)			
	Gamma (γ)		(4)	
(b)	Which type of ra	diation is the most ionising?	(1)	
,	Tick one box.			
	Alpha (α)			
	Beta (β)			
	Gamma (γ)		(1)	
(c)	Which type of rac	diation has the longest range in air?	(1)	
	Tick one box.			
	Alpha (α)			
	Beta (β)			
	Gamma (γ)			
			(1)	
Whe	en radioactive isoto	opes in the Earth's crust decay they release energy.		
The	decay causes the	heating of rocks in the crust.		
(d)	The diagram belo	ow shows the decay of uranium-238 (U-238) into thorium-234 (Th-234).		
		$^{238}_{92}U \rightarrow ^{234}_{90}Th + {^{4}_{2}He}$		

Complete the table below to show the number of neutrons and protons in the nuclei.

Isotope	Number of neutrons	Number of protons
uranium-238	146	
thorium-234		90

(2)

					(-)
(e)	Geothermal power	stations pump wate	er through heated	rocks.	
	The temperature of	the water increase	es from 20 °C to its	s boiling point of 100 °C	
	Calculate the chang	ge in thermal energ	y when the mass	of water heated is 150 kg	
	Specific heat capac	city = 4 200 J/kg °C			
	Use the Physics Eq	luations Sheet.			
					_
					_
		C	change in thermal	energy =	
					(3) (Total 8 marks)
00					
Q3.	er exists as ice, wate	r or steam.			
(a)	Complete the sente	ences.			
	Choose the answer	s from the box.			
	ice	steam	water	7	
				_	
	The particles are arranged in a regular pattern in				
	•	-	•		
	The particles move	quickly in all direct	ions in	·	(2)
(b)	Which will have the	e most internal ene	rgy?		
	Tick one box.				
	1 kg of ice				
	1 kg of steam				
	1 kg of water				

1	1	١

			(1)
(c)	Which will have the lowest density?		
	Tick one box.		
	Ice		
	Steam		
	Water		(1)
The	image shows an iceberg floating in the sea.		(1)
(d)	The iceberg has a mass of 11 200 kg		
	The volume of the iceberg is 12.0 m ³		
	Calculate the density of the iceberg.		
	Use the equation:		
	density = $\frac{\text{mass}}{\text{volume}}$		
	Density =	kg/m³	(2)
(e)	Explain why the iceberg will melt.		

(2)

(Total 8 marks)