Practice Question Set For GCSE

Subject : Physics

Paper-1 Topic: Particle Model Of Matter (Low Demand)

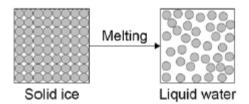
Name of the Student:

Max. Marks: 18 Marks Time: 18 Minutes

Q1.

Figure 1 shows solid ice on a car's rear window.

Figure 1



© Captive cookies/iStock/Thinkstock

The glass window contains an electrical heating element.

(a) Use the particle model in **Figure 2** to describe how the heating element causes the arrangement of the ice particles to change as the ice melts.

Figure 2

You should include a description of how the particles are arranged in the solid ice and in the

			(6)
(b)	A car manufacturer tests differe	ent heating elements by measuring how long it takes ice to melt.	
	During the test some variables	must be controlled.	
	Identify two control variables in	the car manufacturer's test.	
	Tick two boxes.		
	The colour of the car		
	The current in the heating element		
	The mass of ice		
	The size of the car		
	The time taken for the ice to melt		(0)
(c)	Some of the energy supplied by the ice increasing.	y the heater causes the ice to melt without the temperature of	(2)
	What is the name given to this energy supplied by the heater?		
	Tick one box.		
	Latent heat of freezing		
	Latent heat of fusion		

water.

Latent heat of vaporisation	

(1)

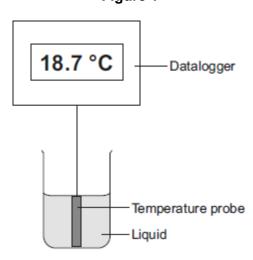
(d) When the heater is supplied with 120 J of energy each second, the internal energy of the ice increases by 45 J each second.

Use the following equation to calculate the efficiency of the heater.

Give your answer to two decimal places.

Efficiency = _____

(2)


(Total 11 marks)

Q2.

A student investigated the cooling effect of evaporation.

She used the equipment (datalogger and probe) shown in **Figure 1** to measure how the temperature of a liquid changed as the liquid evaporated.

Figure 1

(a) Which type of variable was the temperature in this investigation?

Tick (✔) one box.

	Tick (🗸)
control	
dependent	

(b) Before the investigation started, the student checked the accuracy of three different temperature probes. The student put the probes in a beaker of boiling water that had a temperature of 100.0 °C.

The readings from the three temperature probes are shown in **Figure 2**.

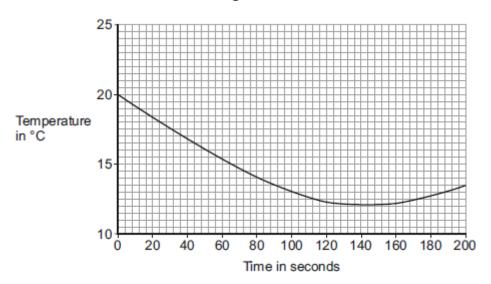
Figure 2

Probe B Probe C 103.2

Which **one** of the temperature probes, **A**, **B** or **C**, was **least** accurate?

Write the correct answer in the box.

Give a reason for your answer.



(2)

(c) **Figure 3** shows how the temperature recorded changed during the investigation.

Figure 3

(i) Use **Figure 3** to determine the lowest temperature recorded as the liquid evaporated.

Temperature = ____ °C

(1)

(ii) Use **Figure 3** to determine how long it took for all the liquid to evaporate. Give a reason for your answer.

Time = _____ seconds

Reason:	
How would increasing the starting temperature of the liquid about	ove 20 °C affect the rate of
evaporation of the liquid?	ovo 20 G unicot uno fato of
	(Total 7 ma