Practice Question Set For GCSE

Subject: Physics

Paper-2 Topic: Forces (High Demand Questions)

lame of the Student:		Time : 24 Minutes
Mark Schemes		
Q1.		
(a)	(vector quantity) has magnitude and a direction	1
	(scalar quantity) has magnitude only	1
(b)	resistive force acts on the ball allow friction or air resistance	•
		1
	so (resultant) force in opposite direction to velocity or	
	so work is done on the ball	1
(c)	momentum = mass × velocity	
	or	
	p = mv	1
(d)	$26 = m \times 5.0$	1
	$m = \frac{26}{5.0}$	
	5.2 (kg)	1
(e)	momentum is conserved in the collision (assuming no external forces)	1
	momentum of the pin increases	1
	therefore the momentum of the ball must decrease. if no other mark is awarded, allow 1 mark for when the ball exerts a force on the pin, the pin exerts an equal and opposite force on the ball	

 $13.5 \times \frac{2}{3}$ (a) 1 9.0 (m/s) allow 9 (m/s) OR $13.5 \times \frac{1}{3} = 4.5 (1)$ 13.5 - 4.5 = 9.0 (m/s) (1)1 (b) reduced speed reduces stopping distance allow reduces thinking / braking distance 1 means less chance of collision OR the car will have less kinetic energy (1) so less likely to cause injury in the event of a collision (1) 1 $14 = v \times 0.70$ (c) 1 $v = \overline{0.70}$ 1 v = 20 (m/s)1 0^2 -20² = 2 × (-6.25) × s 1 20² ignore minus signs throughout 1 s = 32 (m)1 (d) same maximum force applied by the brakes 1 because mass is less there is a greater deceleration allow momentum for mass 1 braking distance is less OR

reducing the mass reduced the kinetic energy of the van (at a given speed) (1) less work needed to be done to bring the van to a stop (1) (force from the brakes is the same) so braking distance is less (1)

[13]

1