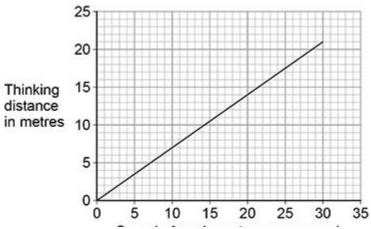
Practice Question Set For GCSE

Subject: Physics



	the Student:rks : 22 Marks	
Q1.		
The	stopping distance of a car is the sum of the thinking dist	ance and the braking distance.
(a)	Which factors affect the thinking distance?	
	Tick (✓) two boxes.	
	Condition of the tyres	
	Driving on wet roads	
	Mass of the car	
	Tiredness of the driver	
	Using a mobile phone	
		(2)
(b)	Explain why a person should not drink alcohol and the	n drive.
		
		(3)

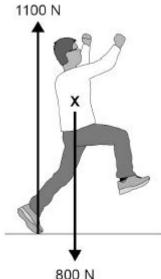
The Highway Code gives information on how thinking distance depends on the speed of a car.

The figure below shows the information as a graph.

What is the speed of a car if the thinking distance is 16 m? Speed of car = m/s Describe the relationship between speed and thinking distance. The Highway Code assumes the driver's reaction time is 0.70 seconds. Draw a line on the figure above to show the relationship for a driver with a reaction time of 1.4 seconds. A car accelerates at 5.0 m/s² over a distance of 45 m initial velocity of the car = 0 m/s Calculate the final velocity of the car. Use the Physics Equations Sheet. Give your answer to 2 significant figures.		
Describe the relationship between speed and thinking distance. The Highway Code assumes the driver's reaction time is 0.70 seconds. Draw a line on the figure above to show the relationship for a driver with a reaction time of 1.4 seconds. A car accelerates at 5.0 m/s² over a distance of 45 m initial velocity of the car = 0 m/s Calculate the final velocity of the car. Use the Physics Equations Sheet.	What is the speed of a car if the thinking distance is 16 m?	
The Highway Code assumes the driver's reaction time is 0.70 seconds. Draw a line on the figure above to show the relationship for a driver with a reaction time of 1.4 seconds. A car accelerates at 5.0 m/s² over a distance of 45 m initial velocity of the car = 0 m/s Calculate the final velocity of the car. Use the Physics Equations Sheet.	Speed of car = m/s	
The Highway Code assumes the driver's reaction time is 0.70 seconds. Draw a line on the figure above to show the relationship for a driver with a reaction time of 1.4 seconds. A car accelerates at 5.0 m/s² over a distance of 45 m initial velocity of the car = 0 m/s Calculate the final velocity of the car. Use the Physics Equations Sheet.		
Draw a line on the figure above to show the relationship for a driver with a reaction time of 1.4 seconds. A car accelerates at 5.0 m/s² over a distance of 45 m initial velocity of the car = 0 m/s Calculate the final velocity of the car. Use the Physics Equations Sheet.		
Draw a line on the figure above to show the relationship for a driver with a reaction time of 1.4 seconds. A car accelerates at 5.0 m/s² over a distance of 45 m initial velocity of the car = 0 m/s Calculate the final velocity of the car. Use the Physics Equations Sheet.		
A car accelerates at 5.0 m/s² over a distance of 45 m initial velocity of the car = 0 m/s Calculate the final velocity of the car. Use the Physics Equations Sheet.	The Highway Code assumes the driver's reaction time is 0.70 seconds.	
initial velocity of the car = 0 m/s Calculate the final velocity of the car. Use the Physics Equations Sheet.	·	
Calculate the final velocity of the car. Use the Physics Equations Sheet.	A car accelerates at 5.0 m/s ² over a distance of 45 m	
Use the Physics Equations Sheet.	initial velocity of the car = 0 m/s	
	Calculate the final velocity of the car.	
Give your answer to 2 significant figures.	Use the Physics Equations Sheet.	
	Give your answer to 2 significant figures.	
		

	Final velocity (2 significant figures) = m/s
	(4) (Total 14 marks)
	res are either contact forces or non-contact forces.
(a)	Which of the following is a non-contact force?
	Tick (✔) one box.
	Electrostatic force
	Friction force
	Tension force
	(1)
Figu	ire 1 shows a person standing on some bathroom scales.
	Figure 1
	Bathroom scales
The pers	person exerts a downward force on the scales and the scales exert an upward force on the on.
(b)	Which sentence about the forces is true?
	Tick (✔) one box.
	The downward force is less than the upward force. The downward force is the same size as the upward force.

Q2.


	upward force is greater than the		(1)
(c)	What is the name of the upward force on the person?		(1)
,	Tick (✓) one box.		
	Air resistance		
	Normal contact force		
	Weight		
			(1)
(d)	The person on the scales has a mass of 55 kg.		
	gravitational field strength = 9.8 N/kg		
	Calculate the weight of the person.		
	Use the equation:		
	weight = mass × gravitational field strength		
		N	
			(2)
(e)	The gravitational field strength is not the same at all points on the surface of the	Earth.	
	The gravitational field strength is weakest at the equator.		
	A person travelled from the UK to the equator.		
	What happened to the weight of the person?		
	Tick (✓) one box.		
	The weight decreased.		
	The weight remained the same.		
	The weight increased.		

(1)

Figure 2 shows the forces acting on a person.

The person is about to jump.

Figure 2

	800 N	
(f)	The arrow representing the weight of the person is drawn from point X .	
	What is the name given to point X ?	
	Tick (✓) one box.	
	Centre of force	
	Centre of mass	
	Centre of weight	
		(1)
(g)	Determine the size of the resultant force on the person in Figure 2.	
		_
	Resultant force =	
		(1) (Total 8 marks)