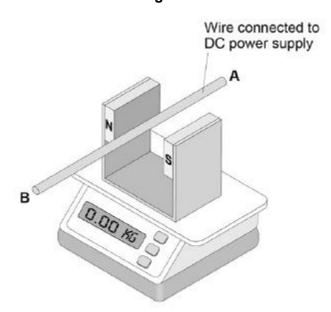
Practice Question Set For GCSE

Subject: Physics

Merit Minds www.merit-minds.com
Exam Preparation and Free Resources

Name of the Student:	
Max. Marks : 18 Marks	Time : 18 Minutes


Q1.

A student placed a permanent magnet on a top-pan balance.

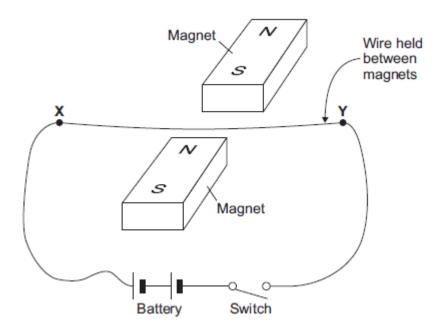
He clamped a straight piece of wire so that it was suspended in the magnetic field.

Figure 1 shows the apparatus.

Figure 1

a)	When a current passed through the wire from A to B, the reading on the balance increase						
	Explain why.						
	·						

Label the axes, with the independ		
	Figure 2	
A		
Ī		
, <u></u>		-
The length of the wire in the mag	netic field in Figure 1 is 4.8 × 10 ⁻² m	
The current in the wire is 0.80 A		
The reading on the balance is 1.2	2 × 10 ⁻³ kg	
Gravitational field strength = 9.8 N		
Calculate the magnetic flux densi	ty of the permanent magnet.	
		


Sketch a graph on Figure 2 to show the relationship between the current and magnetic force

(b)

The student increased the current in the wire.

Q2.

The diagram shows apparatus set up by a student.

Closing the switch creates a force that acts on the wire XY.

(i)	Explain why a force acts on the wire XY when the switch is closed.
(ii)	The force causes the wire XY to move.
	Draw an arrow on the diagram above to show the direction in which the wire XY will move.

(b) The student replaced the battery with a low frequency alternating current (a.c.) power supply.The student closed the switch.

(i) Describe the movement of the wire.

Give a reason for your answer to part (i).	