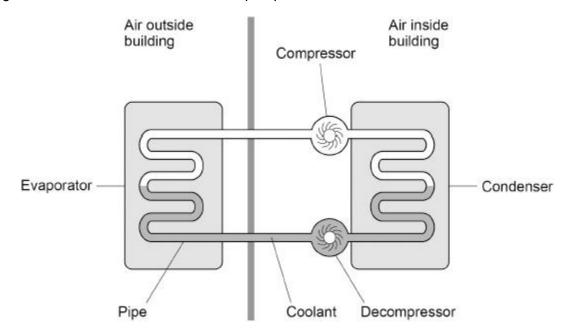
Practice Question Set For GCSE

Subject: Physics

Paper-2 Topic: Waves (High Demand Questions)



Name of the Student:	
Max. Marks: 26 Marks	Time : 26 Minutes

Q1.

An air source heat pump transfers energy from the air outside a building to increase the temperature of the air inside the building.

The figure below shows an air source heat pump.

The compressor is connected to the mains electricity supply.

The pipe in the heat pump contains a substance called coolant.

In the evaporator, energy is transferred from the air outside the building to the liquid coolant

11 UI	le evaporator, energy is transferred from the air outside the building to the liquid coolant.
Γhe	temperature of the coolant increases and it evaporates.
a)	Explain what happens to the internal energy of the coolant as its temperature increases.
	-
b)	What name is given to the energy needed to change the state of the liquid coolant?

(2)

(c)	What happens to the mass of the coolant as it evaporates and becomes a vapour?
	Tick (✔) one box.
	Decreases
	Stays the same
	Increases
(d)	The compressor increases the density and temperature of the coolant vapour inside the pipe.
` ,	Explain why the pressure in the pipe increases.
	(2)
(e)	The condenser transfers energy from the coolant to the air in the building.
	When the total energy input to the heat pump system is 1560 kJ the temperature of the air in the building increases from 11.6 °C to 22.1 °C.
	The efficiency of the heat pump system is 87.5%.
	The mass of the air inside the building is 125 kg.
	Calculate the specific heat capacity of the air in the building.
	Give your answer in standard form.
	

(1)

	Specific heat capacity (standard form) =	_J/kg °C
f)	The air in the building gains 400 J for every 100 J of energy transferred from the main electricity supply to the compressor.	S
	An advertisement claims that the heat pump system has an efficiency of 400%.	
	Explain why the advertisement is not correct.	
		Гotal 15 ւ
	(1	Гotal 15 г
\ st	(T udent made water waves in a ripple tank.	「otal 15 r
	udent made water waves in a ripple tank. Describe how the frequency and wavelength of the water waves in the ripple tank car	
	udent made water waves in a ripple tank. Describe how the frequency and wavelength of the water waves in the ripple tank car	
	udent made water waves in a ripple tank. Describe how the frequency and wavelength of the water waves in the ripple tank car	
A st₁ a)	udent made water waves in a ripple tank. Describe how the frequency and wavelength of the water waves in the ripple tank car	
	udent made water waves in a ripple tank. Describe how the frequency and wavelength of the water waves in the ripple tank car	
	udent made water waves in a ripple tank. Describe how the frequency and wavelength of the water waves in the ripple tank car	
	udent made water waves in a ripple tank. Describe how the frequency and wavelength of the water waves in the ripple tank car	

Table 1 and Table 2 show the results.

Table 1

Frequency in nertz	9.8	9.4	9.3		
	Table	e 2			
Reading	1	2	3		
Wavelength in	1.7	2.2	2.1		
etermine the me	ean wave sp	eed.			
			Mean	wave speed =	m/s
What is the adva	otago of takir	ag ropost ros	dings and th	en calculating a mean?	
mat is the auvai	ilage of takii	ig repeat rea	ulligs and th	en calculating a mean!	
he speed of the	wave is affe	cted by the d	epth of the v	ater in the ripple tank.	
The deeper the w	ater the fast	er the wave.			
ine deeper the v		water affects	the wavelen	gth of the wave if the frequency is	
	depth of the	water amount		gui of the wave if the frequency is	

(b)

(c)

(d)

(2) (Total 11 marks)