Practice Question Set For GCSE

Subject: Physics

Name of the Student:

© D	Merit Minds www.merit-minds.com		
Exam Preparation and Free Resources			

Max. Marks: 17 Marks		Time : 17 Minute
Mark Sch	fark Schemes	
Q1.		
(a)	non-contact (force)	
	allow electrostatic (force)	1
	attraction (between hair and balloon)	
	allow repulsion between the hairs on the head	1
(b)		
()	an answer of 2.0×10^{-6} (C) scores 3 marks an answer of 2×10^{-3} (C) scores 2 marks	
	$0.0050 = Q \times 2500$	
	this mark may be awarded if pd is incorrectly or not converted	1
	$Q = \frac{0.0050}{2500}$	•
	this mark may be awarded if pd is incorrectly or not converted	1
	$Q = 2.0 \times 10^{-6} (C)$ or	
	Q = 0.0000020 (C)	
	these answers only	1
(c)		

an answer of 120 (Ω) scores **5** marks $0.16 = 1 \times 4.0 \times 10^{-3}$ or 0.16

$$I = \frac{0.16}{4.0 \times 10^{-3}}$$

this mark may be awarded if time is incorrectly / not converted

$$I = 40 (A)$$
 this value only

1

1

 $4800 = 40 \times R$ allow $4800 = their calculated I \times R$ 1 $R = \frac{4800}{40}$ allow R = 4800 / their calculated I 1 $R = 120 (\Omega)$ allow an answer consistent with their calculated I 1 [10] **Q2.** (a) the (mean) kinetic energy of the particles increases allow the (mean) speed of the particles increases 'kinetic energy increases' is insufficient by itself do not accept particles vibrating 1 which increases the (internal) energy of the water ignore description of evaporation 1 (b) Particles in a gas have more potential energy than particles in a liquid. 1 (c) Energy given to water E = mL with quantities defined 1 power output (of Bunsen burner) = $\frac{\text{energy transferred (to water)}}{\text{energy transferred (to water)}}$ allow $P = \frac{E}{t}$ with quantities defined 1 power output = $\frac{\text{change in mass} \times \text{specific latent heat}}{\text{change in mass}}$ time allow E = Pt equated with E = mL or stated in words $P = \frac{mL}{t}$ with quantities defined 1 time should be converted to seconds or use a time of 300 seconds 1 [7]