Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: GCSE Triple Science_Electricity (High Demand Questions)

Name of the Student:_		
Max. Marks : 23 Marks	;	Time: 23 Minutes

Q1.

(a) Complete the sentence. Choose answers from the box.

charge potential power temperature time
The current through an ohmic conductor is directly proportional to the
across the component, provided
that the remains constant.

(b) Figure 1 shows a current – potential difference graph for a filament lamp.

Current Potential difference

ases.			

(c) Many householders are replacing their filament lamps with LED lamps which are more energy

(3)

	efficient.	
	What does more energy efficient mean?	
		(1)
A Lig	tht Dependent Resistor (LDR) is used to turn on an outside lamp when it gets dark.	
Part	of the circuit is shown in Figure 2 .	
	Figure 2	
	12V to outside lamp circuit	
(d)	The light intensity decreases.	
	What happens to the potential difference across the LDR and the current in the LDR?	
	Potential difference	
	Current	(2)
(e)	What is the resistance of the LDR when the potential difference across it is 4 V? Give a reason for your answer.	(2)

Explain your answer.

Resistance = Ω

Reason _____

(f) Calculate the current through the LDR when the resistance of the LDR is 5000 $\Omega.\,$ (2)

	Give your answer to 2 significant figures.	
		A
		(4) tal 14 marks)
	(10	itai 14 iliaiks)
The heat	photograph below shows a coffee machine. The coffee machine uses an electric element water.	nt to
(a)	The coffee machine has a metal case.	
	Why would it be dangerous for the live wire of the electric cable to touch the metal case	e?
		(1)
(b)	The power output of the coffee machine is 2.53 kW.	, ,
	The mains potential difference is 230 V.	
	Calculate the current in the coffee machine.	

Q2.

Current =	A
The coffee machine heats water from 20 °C to 90 °C.	
The power output of the coffee machine is 2.53 kW.	
The specific heat capacity of water is 4200 J/kg °C.	
Calculate the mass of water that the coffee machine can heat in 14 seconds.	
Mass =	kg
	(Total 9 ma