Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: GCSE Triple Science_Electricity (Low Demand Questions)

ଶା	Merit Minds
0	www.merit-minds.com
Exam Pre	paration and Free Resources

Max. Marks : 18 Marks	Time : 18 Minutes
Name of the Student:	

Q1.

A student investigated how the current in a circuit varied with the number of lamps connected in parallel in the circuit.

Figure 1 shows the circuit with three identical lamps connected in parallel.

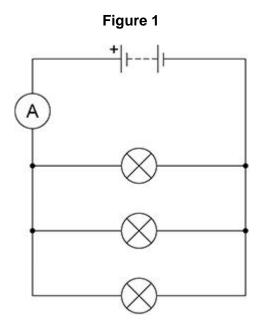
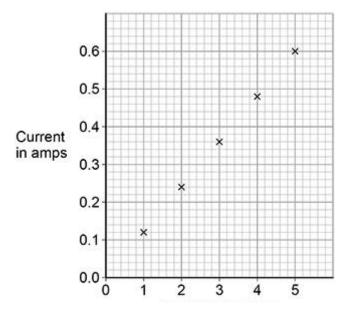
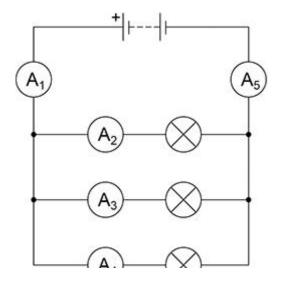



Figure 2 shows the results.

Figure 2

(a) Complete the sentences.

Choose answers from the box.


Each answer can be used once, more than once or not at all.

decreased	stayed the same	increased		
As the number of	of lamps increased, the	current	·	
As the number of	of lamps increased, the	total resistance o	f the circuit	
As the number of	of lamps increased, the p	potential differend	ce across the batt	ery
When there were and 0.36 A.	e three lamps in the circu	uit the ammeter re	ading kept chang	ging between (
What type of err	or would this lead to?			
Tick (✓) one bo	x.			
Random error				
Systematic erro	r			
Zero error				

Figure 3 shows a circuit with five ammeters and three identical lamps.

Figure 3

(1)

(c) Complete the table below to show the readings on ammeters A₂ and A₅.

Ammeter	A ₁	A ₂	A_3	A ₄	A ₅
Current in amps	0.36		0.12	0.12	

(2)

(d) The resistance of one lamp is 15 Ω .

The current in the lamp is 0.12 A.

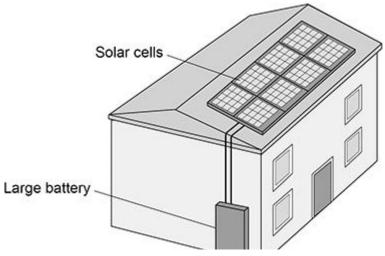
Calculate the power output of the lamp.

Use the equation:

power =
$$(current)^2 \times resistance$$

Power = _____ W

(2)


(Total 8 marks)

Q2.

The figure below shows a house with a solar power system.

The solar cells generate electricity.

When the electricity generated by the solar cells is not needed, the energy is stored in a large battery.

The color colle on the roof of the house always fo	age in the same direction	
The solar cells on the roof of the house always fa		
Explain one disadvantage caused by the solar co	ells only facing in one direction.	
The mean current from the solar cells to the batte	ery is 3.5 A.	
Calculate the charge flow from the solar cells to t	the battery in 3600 seconds.	
Use the equation:		
charge flow = curre	ent × time	
	Charge flow	C
	Charge flow =	c
Write down the equation which links efficiency, to	otal power input and useful power outpu	t.
At one time in the day, the total power input to th	e solar cells was 7500 W.	
The efficiency of the solar cells was 0.16		
Calculate the useful power output of the solar ce	lle.	

	Useful power output =	_ W
he wasted energy that is not usefull	ly transferred by the solar cells is dissipated.	
What happens to energy that has bee	en dissipated?	
Tick (✔) one box.		
The energy becomes less useful.		
The energy is destroyed.		
The energy is used to generate electricity.		
		(1
Vhy is it unlikely that all the UK's ele	ectricity needs could be met by solar power systems?	
Tick (✓) one box.		
A very large area would need to be covered with solar cells.		
Solar power is a non-renewable ene resource.	ergy	
The efficiency of solar cells is too hig	gh.	
	(Total 1	1) I 0 marks