Practice Question Set For GCSE

ax. Mai	ks : 21 Marks	Time : 21 Minute
Q1 .		
The	diagram shows the circuit used to obtain the data needed to plot the current-ph for a filament lamp.	ootential difference
	A M	
(a)	Why is component M included in the circuit?	
	Tick one box.	
	To keep the current constant.	
	To keep the potential difference constant.	
	To vary the current.	
(b)	Why does the resistance of the lamp increase as the potential difference as increases?	cross the lamp

(c) The potential difference across the lamp is 12.0 $\ensuremath{\text{V}}$

Calculate the energy transferred by the lamp when 8.5 C of charge flows through the lamp.

Use the equation:

(1)

energ	y transferred = charge flow x poter	ential difference	
	Energy	y transferred =	J

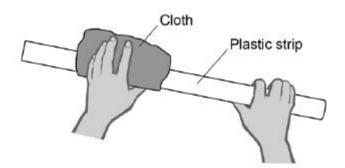
(d) The table gives data about two types of lamp that householders may use in their homes.

Type of lamp	Energy efficiency	Mean lifetime in hours
Halogen	10%	2000
LED	90%	36000

Both types of lamp produce the same amount of light.

Describe the environmenta amp.	al advantages of using the LED lamp compared with the	e halogen

(2) (Total 6 marks)


(2)

Q2.

A student used some everyday items to investigate static electricity.

Figure 1 shows a flexible plastic strip being rubbed with a cloth.

Figure 1

(a)) Com	plete	the	sentence.
١	u	,	PICIC	uic	SCHILCHICC.

Choose the answer from the box.

electrons	neutrons	protons	

Rubbing the plastic strip with the cloth causes the strip to become

negatively charged because _____ move from the cloth

onto the plastic strip.

(1)

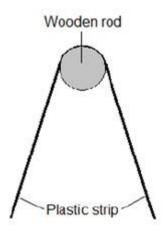
(b) Complete the sentence.

Choose the answer from the box.

a negative	a positive	zero
------------	------------	------

The cloth is left with _____ charge.

(1)


(2)

(c) The student hung the plastic strip over a wooden rod.

The ends of the strip moved away from each other.

Figure 2 shows the position of the plastic strip on the wooden rod.

Figure 2

What two conclusions should the student make about the forces acting on the two halves of the plastic strip?

1.					

(d) Another student repeated the experiment using the same method and found the plastic strip

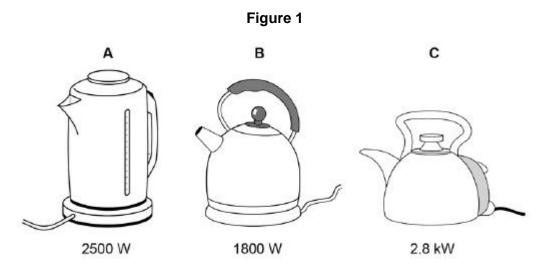
moved in the same way.

Complete the sentence.

Choose the answer from the box.

	an anomaly	repeatable	reproducible
The investig	gation was		•

Q3.


Most electric kettles use the ac mains electricity supply.

(a) Complete the sentence.

The ac mains supply has a potential difference that continuously _____ polarity

(1)

Figure 1 gives the power output of three electric kettles.

A student investigated how the power output of a kettle affected the time taken to boil a fixed volume of water.

The water in all three kettles had an initial temperature of 25 °C.

(b)	What type	of variable	e was th	e time's
-----	-----------	-------------	----------	----------

Tick **one** box.

Control	
Dependent	3
Independent	8

(1)

Figure 2 shows h	now the ar	mount of energy transferred by a kettle varies with time.	
		Figure 2	
		50 000	
	Energy in joules	30 000	
		20 000	
		10 000	
		0 5 10 15 20 25	
		Time in seconds	
The power output	of the ke	ttle is given by the gradient of the graph.	
Calculate the pow			
		Power output =	W
Write down the e	quation th	at links charge flow, current and time.	
Calculate the cur	rent throu	gh the kettle when 2400 coulombs of charge flows in 250 s	econds

(c) Which kettle will boil the water in the shortest time?

Current =	A
	(3)
	(Total 10 marks)