Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: GCSE Triple Science_Electricity (Standard Demand Questions)

	the Student:rks : 21 Marks	Time : 21 Minute
Q1.	photograph below shows an electric car being recharged.	
	rcable	Charging station
(a)	The charging station applies a direct potential difference across the battery of	of the car.
	What does 'direct potential difference' mean?	
(b)	Which equation links energy transferred (<i>E</i>), power (<i>P</i>) and time (<i>t</i>)?	(1
	Tick (✓) one box.	
	energy transferred = $\frac{\text{power}}{\text{time}}$	
	energy transferred = time power	

energy transferred = power × time			
energy transferred = power ² × time			
The battery in the electric car can store 162 000 000 J of energy.			
The charging station has a power output of 7200 W.			
Calculate the time taken to fully recharge the battery from zero.			
	s		
Which equation links current (A notantial difference (M and registance (P)2			
TICK (V) OTTE DOX.			
$I = V \times R$			
$I = V^2 \times R$			
$R = I \times V$			
$V = I \times R$			
The notential difference across the battery is 480 V			
	tric car.		
Calculate the resistance of the motor.			
	energy transferred = power ² x time The battery in the electric car can store 162 000 000 J of energy. The charging station has a power output of 7200 W. Calculate the time taken to fully recharge the battery from zero. Time taken =		

Resistance =	Ω
116333181166 -	7

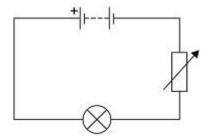
(3)

- (f) Different charging systems use different electrical currents.
 - Charging system A has a current of 13 A.
 - Charging system B has a current of 26 A.
 - The potential difference of both charging systems is 230 V.

How does the time taken to recharge a battery using charging system **A** compare with the time taken using charging system **B**?

Tick (✓) one box.

Time taken using system A is half the time of system B	3
Time taken using system A is the same as system B	3
Time taken using system A is double the time of system B	3


(1)

(Total 10 marks)

Q2.

A student investigated how the current in a filament lamp varied with the potential difference across the filament lamp.

The diagram below shows part of the circuit used.

(a) Complete above diagram by adding an ammeter and a voltmeter.

Use the correct circuit symbols.

(3)

The graph below shows some of the results.

	current and potential difference.	
	Draw a line on the graph to show the relationship between the negative values of current and potential difference.	(2)
(c)	Write down the equation which links current (\it{I}), potential difference (\it{V}) and resistance (\it{R}).	
		(1)
(d)	Determine the resistance of the filament lamp when the potential difference across it is 1.0 V.	
	Use data from the graph above.	

Resistance = _ __ Ω

(4)

A second student did the same investigation. The ammeter used had a zero error. (e)

What is meant by a zero error?

(b)

_		
_		
(4)		
(1)		
Total 11 marks)	1	
i Otal I I Illai KS)	(