Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: GCSE Triple Science_ENERGY (High Demand Questions)

	the Student:rks : 18 Marks	Time : 18 Minutes
	photograph below shows a coffee machine. The coffee machine uses an elect	ric element to
	[Miles]	
(a)	The coffee machine has a metal case.	
	Why would it be dangerous for the live wire of the electric cable to touch the	metal case?(1)
(b)	The power output of the coffee machine is 2.53 kW.	(-,
	The mains potential difference is 230 V.	
	Calculate the current in the coffee machine.	

	Current =	A
(c)	The coffee machine heats water from 20 °C to 90 °C.	
	The power output of the coffee machine is 2.53 kW.	
	The specific heat capacity of water is 4200 J/kg °C.	
	Calculate the mass of water that the coffee machine can heat in 14 seconds.	
	Mass =	kg (5)
		(Total 9 marks)

Q2.

The diagram below shows a wind turbine.

(a) At a particular wind speed, a volume of 2.3×10^4 m³ of air passes the blades each second.

The density of air is 1.2 kg/m³.

Calculate the mass of air passing the blades per second.

Mass of air per second = _____k

(3)

(b) The power output of the turbine is directly proportional to the kinetic energy of the air passing the blades each second.

At a different wind speed, the wind turbine has a power output of 388 kW.	
The mass of air passing the wind turbine each second is 13 800 kg.	
Calculate the speed of the air passing the blades each second.	
Assume that the process is 100% efficient.	
Speed of air =	m/s
	(Total 9 n