Practice Question Set For GCSE

Subject: Physics

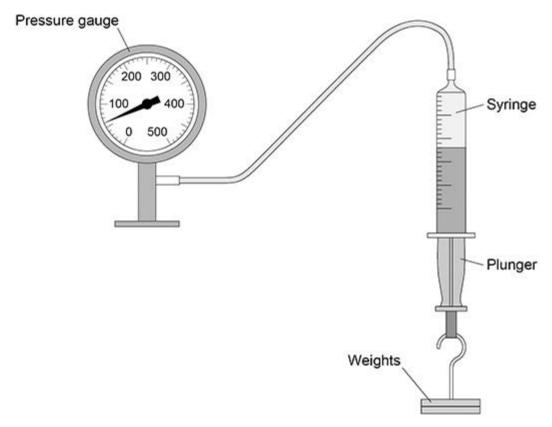
Paper-1 Topic: GCSE Triple Science_Particle Model Of Matter (High Demand Questions)

	the Student rks : 26 Mar		Time : 26 Minute	
■ A ctu	udant invastia	pated the density of differe	t fruite	
	_	shows the results.	t itulis.	
1116	table below s	T		
	Fruit	Density in g/cm ³		
	Apple	0.68		
	Kiwi	1.03		
	Lemon	0.95		
	Lime	1.05		
(b)	Write down	the equation which links	ensity ($ ho$), mass (m) and volume (V).	
(c)	The mass of	f the apple was 85 g.	(1	
(0)			n^3	
	The density of the apple was 0.68 g/cm ³ . Calculate the volume of the apple.			
	Give your a	nswer in cm ³ .		
			<u>. </u>	
			-	

Volume = _____ cm³

(d) The student only measured the volume of each fruit once.

The volume measurements **cannot** be used to show that the method to measure volume gives precise readings.


Give the reason why.			

(Total 6 marks)

Q2.

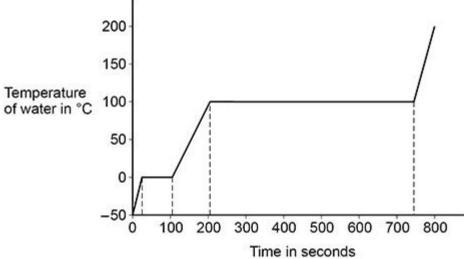
A teacher demonstrated the relationship between the pressure in a gas and the volume of the gas.

The figure below shows the equipment used.

This is the method used.

- 1. Record the initial volume of gas in the syringe and the pressure reading before any weights are attached.
- 2. Attach a 2.0 N weight to the syringe.
- 3. Record the volume of the gas and the reading on the pressure gauge.
- 4. Repeat steps 2 and 3 until a weight of 12.0 N is attached to the syringe.

	N to	N		
	14 to	1		
Give one c	control variable in t	the investigation.		
				_
When the v kPa.	volume of gas in th	ne syringe was 45	cm ³ , the pressure gauge showed a va	alue of 60
Calculate t	he pressure in the	gas when the vo	lume of gas in the syringe was 40 cm ³	3.
				-
				_
				_
				-
				-
			Pressure =	- kPa
				Ki u
			sed, the pressure on the inside walls o	
syringe de	creased.	ne syringe increas	•	
syringe de	creased.		•	
	creased.		•	
syringe de	creased.		•	
syringe de	creased.		•	
syringe de	creased.		•	
syringe de	creased.		•	


Q3.

A student investigated how the temperature of a lump of ice varied as the ice was heated.

The student recorded the temperature until the ice melted and then the water produced boiled.

The figure below shows the student's results.

The power output of the heater was constant.

0 100 200 300 400 500 600 700 800 Time in seconds
The specific heat capacity of ice is less than the specific heat capacity of water.
Explain how the figure above shows this.
The specific latent heat of fusion of ice is less than the specific latent heat of vaporisation of water.
Explain how the figure above shows this.
A second student did the same investigation and recorded the temperature until the water produced boiled.
In the second student's investigation more thermal energy was transferred to the surroundings.
Describe two ways the results of the experiment in the figure above would have been different.
1

2	
2	
When the water was boiling, 0.030 kg of water turned into steam.	
The energy transferred to the water was 69 kJ.	
Calculate the specific latent heat of vaporisation of water.	
Give the unit.	
	 -
	 -
	 -
	 -
	 _
	_
	_
Specific latent heat of vaporisation =	
-,	