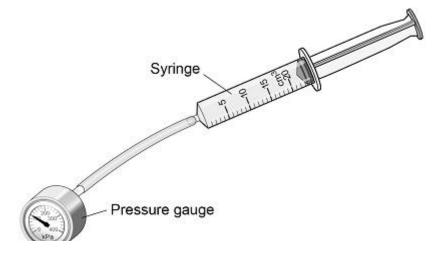
## Practice Question Set For GCSE

**Subject: Physics** 

## Paper-1 Topic: GCSE Triple Science\_Particle Model Of Matter (Low Demand Questions)


|     | f the Student:nrks : 25 Marks                                                   | Time : 25 Minutes |
|-----|---------------------------------------------------------------------------------|-------------------|
| Q1. |                                                                                 |                   |
| A t | eacher demonstrated the relationship between the pressure in a gas and the volu | ume of the gas.   |
| The | e figure below shows the equipment used.                                        |                   |
|     | Pressure gauge                                                                  | lunger            |
| (a) | What is the range of the syringe?                                               |                   |
|     | Tick (✓) one box.                                                               |                   |
|     | From 0 to 1 cm <sup>3</sup>                                                     |                   |
|     | From 0 to 5 cm <sup>3</sup>                                                     |                   |
|     | From 0 to 25 cm <sup>3</sup>                                                    | (1)               |
| (b) | The relationship between the pressure and volume of a gas is given by the eq    |                   |
| (0) | pressure × volume = constant                                                    | , canorii         |
|     | Complete the sentence.                                                          |                   |
|     | For this equation to apply, both the mass of gas and the o                      | f the gas must    |
|     | stay the same.                                                                  | -                 |
|     |                                                                                 | (1)               |
| (c) | The initial volume of the gas in the syringe was 12 cm <sup>3</sup> .           |                   |

The initial pressure of the gas in the syringe was 101 000 Pa.

| pressure × volun                                                        | ne = constant                      |        |
|-------------------------------------------------------------------------|------------------------------------|--------|
|                                                                         |                                    |        |
|                                                                         | Constant =                         | Pa cm³ |
| The teacher pulled the plunger slowly outward                           | ds and the gas expanded.           |        |
| The new volume of the gas was 24 cm <sup>3</sup> .                      |                                    |        |
| Calculate the new pressure in the gas.                                  |                                    |        |
| The constant has the same value as in part (o                           | <b>:</b> )                         |        |
|                                                                         |                                    |        |
|                                                                         |                                    |        |
|                                                                         |                                    |        |
|                                                                         |                                    |        |
|                                                                         |                                    |        |
|                                                                         | New pressure =                     |        |
| Which change occurs when the plunger is pul                             | New pressure =                     |        |
| Which change occurs when the plunger is pul<br>Tick (✔) <b>one</b> box. | New pressure =led slowly outwards? |        |

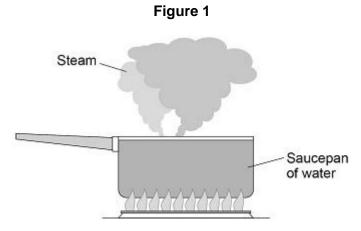
Q2.

A student used the equipment in the image below to investigate how the pressure of a gas varies with the volume of the gas.



The syringe is filled with air.

The table below shows the results.


| Volume in cm <sup>3</sup> | Pressure in kPa |
|---------------------------|-----------------|
| 24                        | 100             |
| 20                        | 120             |
| 12                        | 200             |
| 10                        | 240             |

|                   |                         |                    |                    | <del></del>  |
|-------------------|-------------------------|--------------------|--------------------|--------------|
|                   |                         |                    |                    | <del></del>  |
|                   |                         |                    |                    |              |
| agariba what ba   | annona to the procesure | of the air when th | a valuma of the ci | r ia balvad  |
| escribe wriat ria | appens to the pressure  | or the air when th | e volume of the at | i is naiveu. |
|                   |                         |                    |                    |              |
|                   |                         |                    |                    |              |

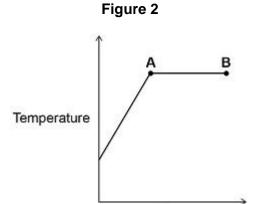
| (c) | The temperature | e of the air in the syringe remained constant during the student's investigation. |
|-----|-----------------|-----------------------------------------------------------------------------------|
| (-) |                 | perties of the air particles would change if the temperature increased?           |
|     | Tick (✓) two bo | oxes.                                                                             |
|     | kinetic energy  |                                                                                   |
|     | mass            |                                                                                   |
|     | shape           |                                                                                   |
|     | speed           |                                                                                   |
|     | volume          |                                                                                   |
|     |                 | (2)<br>(Total 8 marks)                                                            |
|     |                 | (Total o marks)                                                                   |
|     |                 |                                                                                   |

## Q3.

Figure 1 shows water being heated. Eventually the water changed into steam.



(a) Complete the sentences.


Choose answers from the box.

Each answer may be used once, more than once or not at all.

| greater than            | less than                  | the same as    |                  |
|-------------------------|----------------------------|----------------|------------------|
| The distance between t  | he particles in steam is _ |                | the              |
| distance between the p  | articles in liquid water.  |                |                  |
| The density of steam is |                            | the density of | of liquid water. |

(2)

Figure 2 shows how the temperature of the water varied with time.



| (b) | What is the name of the process that is taking place between points <b>A</b> and <b>B</b> ? |
|-----|---------------------------------------------------------------------------------------------|
|     | Give a reason for your answer.                                                              |

Reason \_\_\_\_\_

Time

(c) A mass of 0.063 kg of water was turned into steam.

The specific latent heat of vaporisation of water is 2 260 000 J/kg

Calculate the thermal energy transferred to the water to turn it into steam.

Use the equation:

thermal energy for a change of state = mass ×specific latent heat

Energy = \_\_\_\_\_ J

(2)

(2)

(d) The mass of the steam was 0.063 kg

The volume of the steam was 0.105 m<sup>3</sup>

Calculate the density of steam.

Use the equation:

density = 
$$\frac{\text{mass}}{\text{volume}}$$

Choose the unit from the box.

|                       |      | kg / m³ | m³ / kg   | kg |
|-----------------------|------|---------|-----------|----|
|                       |      |         |           |    |
|                       |      |         |           |    |
|                       |      |         |           |    |
|                       | Unit |         | Density = |    |
| (3                    |      |         | ,         |    |
| (3)<br>Total 9 marks) |      |         |           |    |