Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: GCSE Triple Science_Particle Model Of Matter (Low Demand Questions)

Name of the Student:

(c) When the cyclist uses the brakes, the bicycle slows down.

Max. Ma	rks : 25 Marks				Time : 25 Minutes
Q1.					
	diagram below sh	nows a cyclist rid	ling along a flat road.		
)	
(a)	Complete the se	entence.			
	Choose answer	s from the box.			
	chemical	elastic potential	gravitational potential	kinetic	
	As the cyclist ac	ccelerates, the _		energy store ir	1
	the cyclist's bod	ly decreases and	d the	energy of	of
	the cyclist increa	ases.			(2)
(b)	The mass of the	(-/			
	Calculate the kir				
	Use the equatio	n:			
		kinetic e	energy = 0.5 × mass ×	(speed) ²	
			Mileto		(2)
			Kinetic	energy =	J

	This causes the temperature of the brake pads to increase by 50 °C. The mass of the brake pads is 0.040 kg. The specific heat capacity of the material of the brake pads is 480 J/kg °C.	
	Calculate the change in thermal energy of the brake pads.	
	Use the equation:	
	change in thermal energy = mass × specific heat capacity × temperature change	
	Change in thermal energy =	J (2)
(d)	How is the internal energy of the particles in the brake pads affected by the increase temperature?	in
	Tick one box.	
	Decreased	
	Increased	
	Not affected	
		(1) (Total 7 marks)
Q2.		
	tudent wanted to determine the density of a small piece of rock.	
(a)	Describe how the student could measure the volume of the piece of rock.	

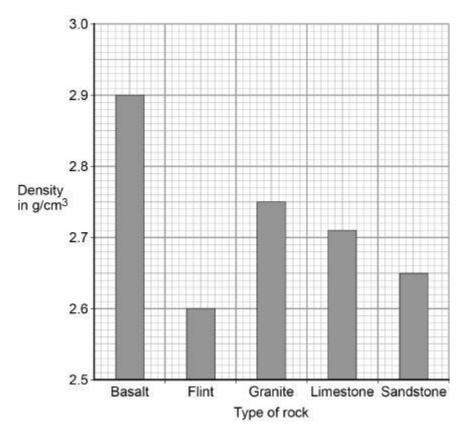
(b) The volume of the piece of rock was 18.0 cm³.

The student measured the mass of the piece of rock as 48.6 g.

Calculate the density of the rock in g/cm³.

Use the equation:

density =
$$\frac{\text{mass}}{\text{volume}}$$



Density = _____ g/cm³

(2)

(4)

The graph below shows the densities of different types of rock.

(c) What is the most likely type of rock that the student had?

Tick one box.

Basalt

	Flint		
	Granite		
	Limestone		
	Sandstone		
(d)	Give one source rock.	e of error that may have occurred when the student measured the volume	(1) of the
			(1)
(e)	How would the	error you described in part (d) affect the measured volume of the rock?	()
		(Тс	(1) otal 9 marks)
Q3.	plug of an electri	cal appliance contains a fuse.	
(a)		rect circuit symbol for a fuse?	
()	Tick one box.	·	
		-	
	/		

(b) The appliance is connected to the mains electrical supply. The mains potential difference is 230 V.

(1)

	e equation:	
	energy transferred = charge flow x potential difference	
	Energy transferred =	
iagram	below shows the structure of a fuse.	
	Glass case	
	Fuse wire	
Write de	own the equation that links charge flow, current and time.	
The fus	se wire melts when 1.52 coulombs of charge flows through the fuse in 0.40 sec	onds.
Calcula	ate the current at which the fuse wire melts.	
	Current =	A
	ass of the fuse wire is 0.00175 kg. The specific latent heat of fusion of the fuse	wire is
205 00		
	ate the energy needed to melt the fuse wire.	
Use the	e Physics Equations Sheet.	

Calculate the energy transferred when 13 C of charge flows through the appliance.

Energy = _____ J
(2)
(Total 9 marks)