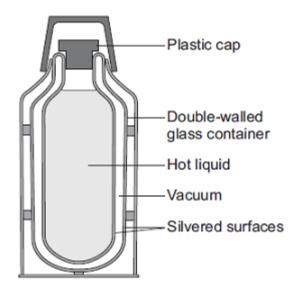
Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic: GCSE Triple Science_Particle Model Of Matter (Standard Demand Questions)


ame of the Student:lax. Marks : 21 Marks	Time : 21 Minutes
Q1.	
The picture shows a person taking a hot shower.	
Mirro	or
(a) When a person uses the shower the mirror gets misty.	
Why?	
	(3
(b) The homeowner installs an electrically heated mirror into the show	wer room.
When a person has a shower, the heated mirror does not become	e misty but stays clear.
Why does the mirror stay clear?	

-
_
(2)
(Total 5 marks)

Q2.

(a) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

The diagram shows the structure of a vacuum flask.

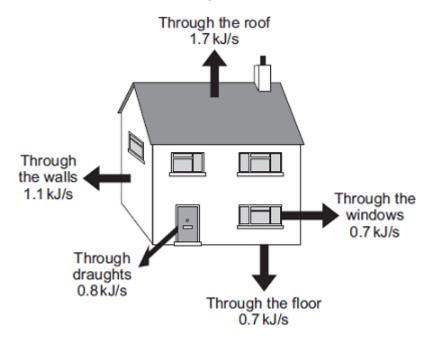
A vacuur	n flas	k is designed to	reduce	the rate	of energy	transfer b	y heating	g processes.
Describe	how	the design of a	vacuum	n flask kee	eps the lic	quid inside	hot.	

(b) Arctic foxes live in a very cold environment.

(6)

© Purestock/Thinkstock

Arctic	fovos	havo	cmall	Loare
AICUC	TOXES.	nave	Smail	i ears


How does	the size o	f the ear	s help to k	keep the f	fox warm	n in a cold e	environme	nt?

(2) (Total 8 marks)

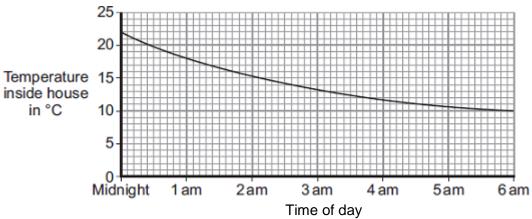

Q3.

Diagram 1 shows the energy transferred per second from a badly insulated house on a cold day in winter.

Diagram 1

(i)	When the inside of the house is at a constant temperature the heating system to the inside of the house equals the house to the outside.	
	Calculate, in kilowatts, the power of the heating system house in Diagram 1 at a constant temperature.	used to keep the inside of the
	1 kilowatt (kW) = 1 kilojoule per second (kJ/s)	
	Power of the heating system =	kW
(ii)	In the winter, the heating system is switched on for a total	al of 7 hours each day.
	Calculate, in kilowatt-hours, the energy transferred each the inside of the house.	day from the heating system to
	Energy transferred each day =	kWh
(iii)	Energy costs 15 p per kilowatt-hour.	
	Calculate the cost of heating the house for one day.	
		Cost =
(iv)	The heating system is switched off at midnight.	
	The graph shows how the temperature inside the house system has been switched off.	changes after the heating
	25	
	Temperature 15-	

Draw a ring around the correct answer in the box to complete the sentence.

Between midnight and 6 am the rate of energy transfer from

decreases.

Giv	ve the reason for y	our answer.	
Diagram	3 shows how the	walls of the house are constrinsulation of the house could with plastic foam.	ucted. be improved by filling the air gap
	Diag	ram 2	Diagram 3
		Inside brick wall	Air bubbles
Outsid	le brick wall	Air gap between walls	Plastic foam
	U-value of t	ne wall = 0.7	U-value of the wall = 0.3
The plas	tic foam reduces e	energy transfer by convection.	
	why.		

the house

(b)

decreases then stays constant.

increases.

(Total 8 marks)

(2)