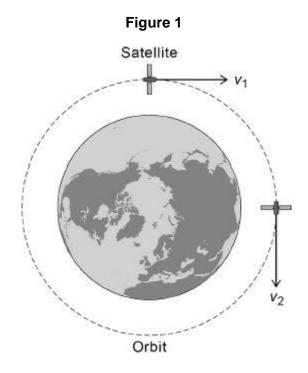
Practice Question Set For GCSE

Subject: Physics

Paper-2 Topic: GCSE Triple Science_Forces (High Demand Questions)

Merit Minds
www.merit-minds.com
Exam Preparation and Free Resources


Name of the Student:	
Max. Marks : 22 Marks	Time : 22 Minutes

Q1.

(a)

A satellite is in a circular orbit around the Earth.

Figure 1 shows the velocity of the satellite at two different positions in the orbit.

xplain why the	velocity of	the satellite	changes	as it orb	oits the E	arth.	

(b) **Figure 2** shows how the length of a satellite orbit depends on the height of the satellite above the Earth's surface.

Figure 2

(3)

A satellite orbits 300 km above the Earth's surface at a speed of 7.73 km/s.

Calculate how many complete orbits of the Earth the satellite will make in 24 hours.							

Number of complete orbits = _____

In 1772, an astronomer called J Bode developed an equation to predict the orbital radii of the planets around the Sun.

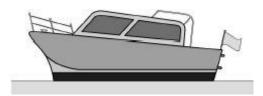
The table shows Bode's predicted orbital radii and the actual orbital radii for the planets that were known in 1772.

Planet	Predicted orbital radius in millions of kilometres	Actual orbital radius in millions of kilometres		
Mercury	60	58		
Venus	105	108		
Earth	150	150		

(5)

Mars	240	228
Jupiter	780	778
Saturn	1500	1430

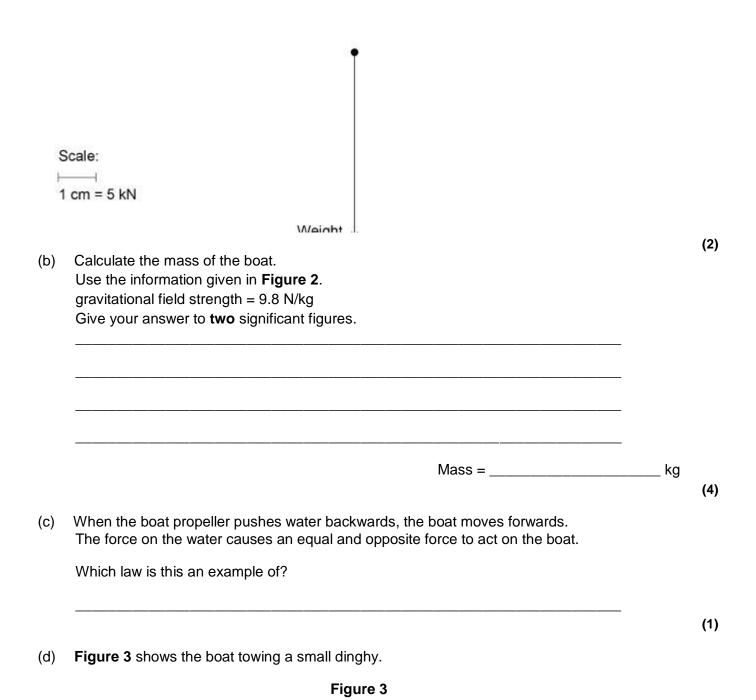
(c)	The predicted data can be considered to be accurate.	
	Give the reason why.	
		(
(d)	J Bode used his equation to predict the existence of a planet with an orbital radius of 2940 million kilometres.	
	The planet Uranus was discovered in 1781.	
	Uranus has an orbital radius of 2875 million kilometres.	
	Explain why the discovery of Uranus was important.	

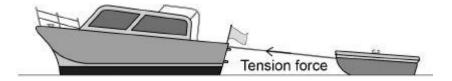

(2)

(Total 11 marks)

Q2.

Figure 1 shows a boat floating on the sea. The boat is stationary.

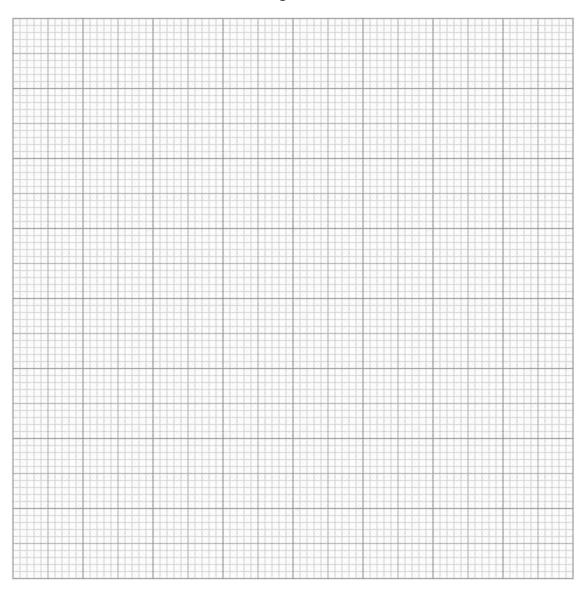

Figure 1



(a) Figure 2 shows part of the free body diagram for the boat.

Complete the free body diagram for the boat.

Figure 2


The tension force in the tow rope causes a horizontal force forwards and a vertical force upwards on the dinghy.

horizontal force forwards = 150 N vertical force upwards = 50 N

Figure 4 shows a grid.

Draw a vector diagram to determine the magnitude of the tension force in the tow rope and the direction of the force this causes on the dinghy.

Figure 4

Magnitude of the tension force in the tow ro	ppe =	N
Direction of the force on the dinghy caused by the tension force in the tow rope	=	
.,		(4
		(Total 11 marks