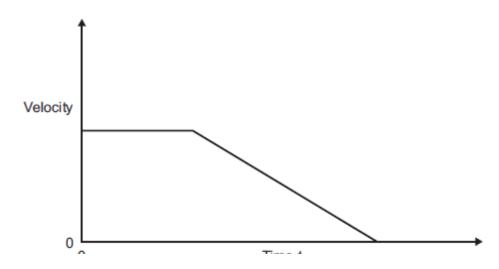
Practice Question Set For GCSE


Subject: Physics

Paper-2 Topic: GCSE Triple Science_Forces (Low Demand Questions)

		Student: 22 Marks				Time : 22 Minute) S
Q1.							
A n	umbei	r of different fo	orces act on a	moving vehi	cle.		
(a)	A ca	ar moving at a	a steady speed	d has a drivin	ng force of 3000 N.		
	(i)	What is the	value of the re	esistive force	e acting on the car?		
		Tick (✓) or	ne box.				
			Tick (✓)				
		2000 N					
		3000 N					
		4000 N					
						(*	1)
	(ii)	What cause	es most of the	resistive forc	e?		
		Tick (✓) or	ne box.				
				Tick (✓)			
		Air resista	ance				
		Faulty bra	akes				
		Poor con	dition of tyres				
					1	(*	1)

A car is moving along a road. The driver sees an obstacle in the road at time t = 0 and applies (b) the brakes until the car stops.

The graph shows how the velocity of the car changes with time.

(i) Which feature of the graph represents the negative acceleration of the car?

Tick (✓) one box.

	Tick (✓)
The area under the graph	
The gradient of the sloping line	
The intercept on the y-axis	

(1)

(ii) Which feature of the graph represents the distance travelled by the car?

Tick (✓) one box.

	Tick (✓)
The area under the graph	
The gradient of the sloping line	
The intercept on the y-axis	

(1)

(iii) On a different journey, the car is moving at a **greater** steady speed.

The driver sees an obstacle in the road at time t = 0 and applies the brakes until the car stops.

The driver's reaction time and the braking distance are the same as shown the graph above.

On the graph above draw another graph to show the motion of the car.

(3)

(c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Thinking distance and braking distance affect stopping distance.

				. <u> </u>
				(Total 13 mar
	falling from the aircraft, he reached a maximu	I for the highest for steady velocity		
	falling from the aircraft, he reached a maximular Draw a ring around the correct answer to contain the maximum steady velocity is called the	m steady velocity mplete the senter frictional initial	/ of 373 m / s af	
	Draw a ring around the correct answer to con	mplete the senter	/ of 373 m / s af	
	Draw a ring around the correct answer to con	mplete the senter frictional initial terminal	y of 373 m / s af	ter 632 seconds.
er	Draw a ring around the correct answer to containing in the skydiver wore a chest pack containing in	mplete the senter frictional initial terminal	y of 373 m / s af	ter 632 seconds.
	Draw a ring around the correct answer to containing in the weight of the chest pack was 54 N.	mplete the senter frictional initial terminal	y of 373 m / s af	ter 632 seconds.
	This maximum steady velocity is called the The skydiver wore a chest pack containing in the weight of the chest pack was 54 N. The gravitational field strength is 10 N / kg.	mplete the senter frictional initial terminal	y of 373 m / s af	ter 632 seconds.
	This maximum steady velocity is called the The skydiver wore a chest pack containing in the weight of the chest pack was 54 N. The gravitational field strength is 10 N / kg. Calculate the mass of the chest pack.	mplete the senter frictional initial terminal	y of 373 m / s af	ter 632 seconds.
	This maximum steady velocity is called the The skydiver wore a chest pack containing in the weight of the chest pack was 54 N. The gravitational field strength is 10 N / kg. Calculate the mass of the chest pack.	mplete the senter frictional initial terminal nonitoring and tra	y of 373 m / s af	ter 632 seconds.

Q2.

aircraft.

Estimate				
Explanation				
Without any calculation, estin	nate his acceleration 6	32 seconds af	ter leaving th	e aircraft.
Without any calculation, estin			ter leaving th	e aircraft.
Explain your value of acceler	ation in terms of forces	S.		e aircraft.
Explain your value of acceler	ation in terms of forces	S.		e aircraft.
Explain your value of acceler	ation in terms of forces	S.		e aircraft.
Explain your value of acceler	ation in terms of forces	S.		e aircraft.
Explain your value of acceler	ation in terms of forces	S.		e aircraft.
Explain your value of acceler	ation in terms of forces	S.		e aircraft.
Explain your value of acceler	ation in terms of forces	S.		e aircraft.
Explain your value of accelered Estimate Explanation	ation in terms of forces	S.		e aircraft.