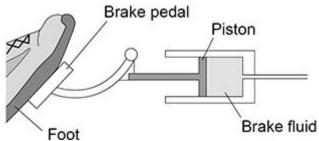
Practice Question Set For GCSE

Subject: Physics

Paper-2 Topic: GCSE Triple Science_Forces (Standard Demand Questions)


Max.	e of Mai	Time : 16 Minutes	
Q1			
	The	thinking distance and braking distance for a car vary with the speed of the car.	
	(a)	Explain the effect of two other factors on the braking distance of a car.	
		Do not refer to speed in your answer.	
			. <u></u>
	(b)	Which equation links acceleration (a), mass (m) and resultant force (F).	(4)
		Tick (✔) one box.	
		resultant force = mass × acceleration	
		resultant force = mass × acceleration ²	
		$\frac{\text{resultant force}}{\text{acceleration}^2} = \frac{\text{mass}}{\text{acceleration}^2}$	
		resultant force = mass acceleration	

(1)

		Deceleration =	m/s ²
Figure 1 speed of		ng distance and braking distance for a car vary v	vith the
	80 Key Thinking distan		
Distance in metres	70		
	50		
	30-		
	20-		
	10-		
	0		
	0 10 20 30 40	50 60 70 80 90 100 110 120 Speed in km/h	
Determin	ne the stopping distance wher	n the car is travelling at 80 km/h.	

Figure 2 below shows part of the braking system for a car.

Figure 2

(e)	Which equation links area of a surface (A), the force normal to that surface (F) and pres (p)?				
	Tick (✔) one box.				
	$p = F \times A$				
	$p = F \times A^2$				
	$p = \frac{F}{A}$				
	$p = \frac{A}{F}$				
		(1)			
(f)	When the brake pedal is pressed, a force of 60 N is applied to the piston.				
	The pressure in the brake fluid is 120 000 Pa.				
	Calculate the surface area of the piston.				
	Give your answer in standard form.				
	Give the unit.				

Surface area (in standard form) = _____ Unit ____