Practice Question Set For GCSE

Subject: Physics

(a)

double

Merit Minds www.merit-minds.com Exam Preparation and Free Resources

Paper-2 Topic: GCSE Triple Science_Forces (Standard Demand Questions)

	the Student:rks : 23 Marks	Time: 23 Minutes
Mark Sch	nemes	
Q1.		
(a)	(resultant) force = mass × acceleration allow F = ma	
	symbols must be correct	
(b)	$(2.7 - 1.5) = 0.75 \times a$	1
	an answer of 1.6 scores 3 marks	1
	$a = \frac{1.2}{0.75}$	
	0.75 allow compensation marks for correct use of incorrect resultant for	rce 1
	a = 1.6	1
	m/s^2	1
(c)	transverse	1
	the oscillation / vibration is perpendicular to the direction of energy transfer	
	allow wave travel for energy transfer	1
(d)	use springs with a smaller spring constant allow use weaker springs	
	or	
	use a trolley with greater mass	
	allow use a heavier trolley	
	do not accept use a larger trolley	
	allow add a mass / weight to the trolley	1
	(To	otal 8 marks)
00		

1

(b)	the hypothesis does not say how increasing / decreasing increases / decreases the acceleration	the fo	rce		1
(c)	appropriate equipment to apply and measure force eg newtonmeter or slotted masses + string +	pulley			1
	appropriate equipment to measure change in velocity and eg ticker timer + tape or light gates + datalog				1
(d)	to reduce the effect of friction on the trolley				1
(e)					
(0)	Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5-6			
	Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.	3-4			
	Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1-2			
	No relevant content	0			
	Indicative content				
	method by which the trolley is to be accelerated				
	 how the accelerating force is varied to give a suitable range of results 				
	how the accelerating force is measured				
	 the use of suitable apparatus to measure the change in velocity of the trolley over a given distance or time 				
	 what data is to be collected in order to calculate acceleration 				
	how the data required is to be measured				
(f)	so that the mass is constant fair test is insufficient				6
	as changing mass would change the acceleration (produced by a given force) or				
	so there is only one independent variable				
(f)	(f) hypothesis A because				
.,	A must be identified to gain either mark				
	the results give a straight line that passes through the origin				

1