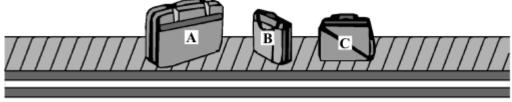
Practice Question Set For GCSE

Subject: Physics

(ii)

Merit Minds www.merit-minds.com Exam Preparation and Free Resources


Paper-2 Topic: GCSE Triple Science_Forces (Standard Demand Questions)

	Student: 17 Marks Time : 17 Minutes	
Q1. (a)	The diagrams show a windsurfer pulling up the sail of a sailboard. The mast p	ivots at point P.
	A B C	
	In which position, A , B or C must the windsurfer pull with the largest force? Given answer.	ve a reason for
(b)	Once the most is unright, the windourfer and the callboard are in equilibrium.	(2
(b)	Once the mast is upright, the windsurfer and the sailboard are in equilibrium. Wind force 1.5 m Weight	
	(i) What does in equilibrium mean?	
		(1

The weight of the windsurfer is 700 newtons. Calculate the moment exerted by the

		windsurfer on the sailboard. Show clearly how you work out your answer.		
		Moment =		2)
	(iii)	Calculate the horizontal force of the wind on the sail. Show clearly how you w your answer.		_,
		Force =		2)
(c)		position allows the windsurfer and sailboard to stay in equilibrium. Explain why.	-	
			- (Total 10 mark	3) s)
The	picture	e shows luggage which has been loaded onto a conveyor belt.		

Q2.

Each piece of luggage has a different mass.

Mass of $\mathbf{A} = 22 \text{ kg}$ mass of $\mathbf{B} = 12 \text{ kg}$ mass of C = 15 kg

	Give a reason for your answer.
(ii)	When the conveyor belt is switched on the luggage moves with a constant speed. Which
	piece of luggage A, B or C has the most momentum?
	Give a reason for your answer.
(iii)	At one point the conveyor belt turns left. The luggage on the belt continues to move at a constant speed.
	Does the momentum of the luggage change as it turns left with the conveyor belt?
	A
	Give a reason for your answer.
Drav	w a circle around the unit which can be used to measure momentum.