Practice Question Set For GCSE

Su	bie	ct	:	Ph	ysics
----	-----	----	---	----	-------

Paper-2 Topic: GCSE Triple Science_Waves (HDQ)

	the Student:	
iviax. ivia	rks : 24 Marks	Time : 24 Minute
Q1.		
The	image below shows a student playing with a remote-controlled car.	
	Remote control	
	Car aerial	
(a)	The remote control transmits radio waves to the car aerial.	
	The transmitted radio waves have a frequency of 320 MHz.	
	speed of radio waves = 3.0×10^8 m/s	
	Calculate the wavelength of the radio waves.	
	Give the unit.	

(5)

Wavelength = _____ Unit ____

												_	
												_	
The c	ar proc	luces s	ound w	aves.									
					es are	different	to sour	nd wav	/es.				
1												_	
2												_	
												_	
ıraph	below s	shows t	:he dista	ance-tim	ne grap	h for the	e first 30) seco	nds of	the ca	's mot	ion.	
	8												
	6									/			
									/				
nce etres								/					
	4												
	4												
etres	2												
etres						/							
etres			1	10		15	20		25	3))	35	

	_
Speed =	m/s
A different car accelerated from 0.12 m/s to 0.52 m/s.	
The acceleration of the car was 0.040 m/s ² .	
The work done to accelerate the car was 0.48 J.	
Calculate the resultant force needed to accelerate the car.	
	_
	_
	_
	_
	_
	_
	_
	_
	_
Resultant force =	N
Explain why the car has a maximum speed.	
	_
	_
	_
	_
	_

_	 		
(4) (Total 24 marks)			