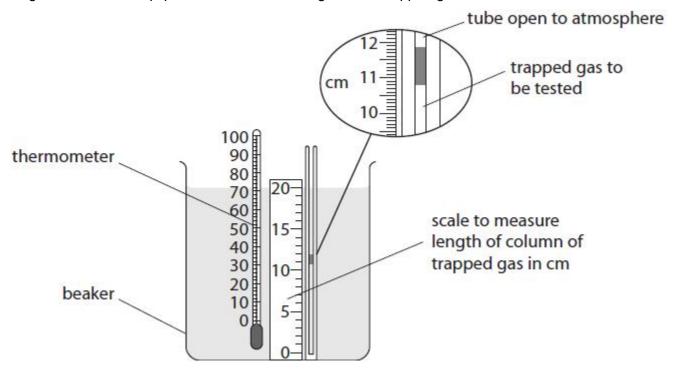
Practice Question Set For GCSE

Subject : Physics

Paper-2 Topic: 14_Particle Model

Name of the Student:_____


Max. Marks: 18 Marks

Time: 18 Minutes

Q1.

A student investigates how the volume of a gas changes when its temperature increases.

The diagram shows the equipment used and the length of the trapped gas at 25°C.

(a) (i) Use the scale to estimate the length of the column of trapped gas.

length of column of trapped gas = cm

(ii) Complete the sentence by putting a cross (\boxtimes) in the box next to your answer. The cross-sectional area of the capillary tube is 1.94×10^{-3} cm².

A $5.6 \times 10^{+3} \text{ cm}^3$ B $2.1 \times 10^{-2} \text{ cm}^3$ C $2.1 \times 10^{-3} \text{ cm}^3$ D $5.6 \times 10^{-4} \text{ cm}^3$

(iii) The gas is heated to 50°C.

The volume of the trapped gas at 50°C is 2.31×10^{-2} cm³.

(1)

(1)

walver a of t		3
volume of t	the trapped gas =ci	m
(b) Describe how the average kinetic energy of the changes.	e particles of the gas changes as the temperature of the gas	as
		(3)
Q2.		
Kinetic theory describes the behaviour of gas partic	cles.	
(a) (i) Complete the sentence by putting a cross (
At −273 °C the particles in a gas are		(1)
A moving rapidlyB moving slowly		(-)
C stationary		
D vibrating	K 45 450 K	
(ii) The temperature of a gas changes from 300 l State how the average kinetic energy of the ga	as particles changes.	/4\
		(1)
(b) The photograph shows a weather balloon filled When released the balloon rises rapidly to a height		
a, a, a a a agui		

Calculate the volume of the trapped gas at 100°C.

(3)

Explain now the nelium gas exerts a pressure on the balloon.)
C) On the surface of the Earth the weather balloon has a volume of 9.1 m ³ , when the temperature is 0 °C and the pressure inside the balloon is 101 kPa.	t
At 30 000 m above the Earth, the temperature is −46 °C and the pressure inside the balloon is 1.12 kPa. (i) Show that −46 °C is 227 K.	
(ii) Calculate the volume of the weather balloon when it is at a height of 30 000 m.)
(3)
volume = m	3
(iii) Suggest what will happen to the balloon as it carries on rising above 30 000 m. (1)
(Total for Question = 10 marks)