Practice Question Set For GCSE

Subject: Physics

Paper-1 Topic : Motion And Forces

Name of the Student:	
Max. Marks : 19 Marks	Time : 19 Minutes
01	

Q1.

Which row of the table is correct for both force and velocity?

(1)

	force	velocity
□ A	scalar	scalar
В	scalar	vector
⊠ C	vector	scalar
□ D	vector	vector

(Total for question = 1 mark)

Q2.

		(Total for question = 3 ma	arks
	10106 –	unit –	
	force –	unit =	
			(0)
$F = m \times a$			(3
Jse the equation			
Calculate the force producing this acceleration State the unit.	on.		
A toy car has a mass of 0.10 kg. The toy car accelerates at 2.0 m/s².			

(a)	Wł	nich	of these situations can increase the reaction time of a driver?	
	Put	a cr	oss (ᢂ) in the box next to your answer.	- >
		A B C D	an icy road worn tyres on his car stopping for a cup of coffee driving for a long time without taking a break	1)
(b)	(i)	A c	car engine produces an average driving force of 1200 N.	
			ar travels 8.0 m. late the work done by the force over this distance.	2)
			work done =	J
			e car has a mass of 1400 kg and travels at a velocity of 25 m/s. late the kinetic energy of the car.	3)
			kinetic energy =	J

		the question with a cross in the box you think is correct \boxtimes . If you change your mind about put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .	an
Qua	antitie	es can be either scalar or vector.	
Whi	ich of	f these is a vector quantity?	
			(1)
	Α	mass	
	В	force	
	С	energy	
	D	distance	
		(Total for question = 1 mai	rk)

Figure 5 shows the apparatus a student uses to investigate how the stopping distance of a toy car depends on the type of surface that it is stopping on.

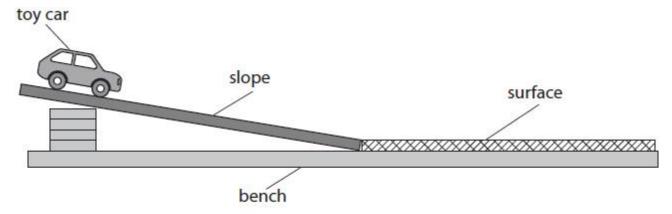


Figure 5

Figure 6 shows a set of results used to find the average stopping distance of the toy car on a surface.

test number	stopping distance in m
1	0.35
2	0.32
3	0.52
4	0.38
5	0.33

Figure 6 (i) State the anomalous value of stopping distance given in the table in Figure 6.					
(')	Ctate the unemaious value of stopping distance given in the table in rigure 6.	(1)			
(ii)	Use the results in Figure 6 to calculate the average stopping distance.				
		(2)			
	average stopping distance =	m			

(iii) State **one** way the student could increase the speed of the car as it reaches the flat surface.

(1)	
(Total for question = 4 marks)	

Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

The graph in Figure 5 shows how the velocity of a car changes with time.

The car starts from rest and travels along a level, straight road for 50 s.

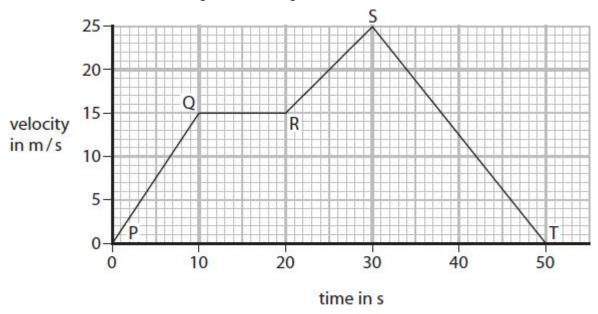


Figure 5

(i)	Which part of the	graph shows v	vhen the car	has constant ve	locity?

- 🔲 A PQ
- B QR■ C RS
- D ST
- (ii) Which part of the graph shows when the car has the greatest acceleration?
 - A PQ
 - B QR
 - C RS
 - D ST
- (iii) Calculate the acceleration of the car in the first 10 s shown on the graph.

Use the equation

 $acceleration = \frac{change\ in\ velocity}{time}$

acceleration = m/s²

(iv) Calculate the distance the car travels in part QR shown on the velocity / time graph in Figure 5.

(1)

(1)

(2)

distance =	n
	(Total for guestion = 7 marks

an	swe	r, pu	t a line through the box 🛮 and then mark y	our new answer with a cross 🗵.	
(i)	Whi	ch of	f these is the correct equation that relates force,	mass and acceleration?	
		B C	$F = m + a$ $F = m - a$ $F = m \times a$ $F = m \div a$		(1
(ii)	Cald	culate	t has a mass of 70 kg. e the force needed to accelerate the cyclist at 2.0 e unit.	$0 \text{ m} / \text{s}^2$.	(2
			f	force = unit =	

Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an

(Total for question = 3 marks)